
18 October, 2024

BIOE50010 – Programming 2

Computer Lab 3

1

Binghuan Li Department of Chemical Engineering

Maria Portela Department of Bioengineering

Wenhao Ding Department of Bioengineering

Formatting

▪ f-string formatting starts with an f before the opening quotation mark

▪ Each individual variable is enclosed within a pair curly brackets {}

2

Code snippet from extract_dna2protein.py

data = [[‘T’, ‘T’, ‘T’, ‘Phe’, ‘F’, ‘Phenylalanine’],
 [‘T’, ‘T’, ‘C’, ‘Phe’, ‘F’, ‘Phenylalanine’]]

print(f'{data[0][0]}{data[0][1]}{data[0][2]}\t{data[0][3]}\t{data[0][4]}\t{dat
a[0][5]}')

TTT Phe F Phenylalanine

print('{}{}{}\t{}\t{}\t{}'.format(data[0][0], data[0][1], data[0][2],
data[0][3], data[0][4], data[0][5])

▪ Alternatively, one can use the format method

Raw String

3

>> Hi
Hello

ConsoleExample

myStr = 'Hi\nHello'
print(myStr)

• Python raw string (‘r’) treats the backslash as a literal character.

>> Hi\nHello

ConsoleExample

myStr = r'Hi\nHello'
print(myStr)

• …which can be useful with the open function

f = open('C:\Users\lbing\Desktop\lab2\the_road_not_taken.txt', 'r')

• By default, Python treats the backslash (\) as a special character: e.g., \t, \n

f = open(r'C:\Users\lbing\Desktop\lab2\the_road_not_taken.txt', 'r')

☺

Progress Check

4

Functions

File Handling

Data Types

Control Flow

Modules

OOP

Testing

Algorithms

3

2-3

1

1

of

weeks

Week 3:

we are here

Checklist: you should have mastered…

▪ File I/O: open, read, close

▪ Loops, recursion: when to terminate reading?

▪ Function definition and namespaces

▪ Formatting with f-string

▪ Python build in functions: count(), strip(), split()

Questions outside the classroom?

General Good Coding Practice

5

▪ Code is read much more often than it is written. Code should always be written in a way

that promotes readability.

▪ PEP 8 provides coding style guide for Python programming from the authors’

perspectives. Key advice to summarise:

1. Use intention-revealing, descriptive names

2. Adhere to the proper code layout (e.g., use consistent 4-space indentation)

3. Keep comments, but good comments do not excuse unclear code

Identifier Type Example Name Naming Convention

variables playBoard Lower Camel Case

functions
displayBoard Lower Camel Case

display_board Snake Case

classes BioengPerson Upper Camel Case

constants MAX_CAPACITY Constant Case

Avoid using names e.g.,

 ,

vague

“noisy”

‘l’ or ‘1’?

‘O’ or ‘0’?

https://peps.python.org/pep-0008/#programming-recommendations

How to Properly Document a Function?

6

def calculate_pythagoras(a: float, b: float) -> float:
 """
 Calculate the hypotenuse of a right-angled triangle.

 Args:
 a (float): Length of side a.
 b (float): Length of side b.

 Returns:
 float: Length of the hypotenuse.

 Example:
 >>> calculate_pythagoras(3, 4)
 5.0
 """
 c = (a**2 + b**2)**0.5
 return c

argument annotation: a and b are float

return annotation:

c is float

Documentation strings:

▪ Function description

▪ Arguments

▪ Return

▪ Example usage

consistent

4-space

indentation

Your tasks today

▪ Three mini tasks on modular programming (writing functions)

▪ Task 1: Calculate radius and from a pair of polar coordinates

𝜃 = atan
edge𝑦

edge𝑥
/𝜋 ∗ 180°

▪ Task 2: Passing an unknown number of arguments into a function

▪ Task 3: The Collatz conjecture

▪ Task 4: Plotting marks on a user-defined board

7

To start…

▪ Read all information and the sample output provided in the lab carefully

▪ Consult the help pages for the string / list methods provided in Lab 2 slides

▪ Study the non-keyword and keyword arguments attached to the slides.

Hint: Non-Keyword and Keyword Args (1/)

8

Suppose you are defining a function with arbitrary number of arguments…

Example

def call_good_fruits(*fruits):
 for item in fruits:
 print('let us take a', item)

good_fruits('kiwi', 'watermelon', 'durian')

Console

let us take a kiwi
let us take a watermelon
let us take a durian

▪ You can use non-keyword arguments (*arg)

Comments

▪ The asterisk * is known as the unpacking operator.

▪ All *args are collected and packed into a tuple (hence, iterable)

▪ Positional arguments must come before *args: def call_greeting(greeting, *names)

① ②

Hint: Non-Keyword and Keyword Args (2/)

9

Example

def call_good_fruits(**fruits):
 for fruit, attribute in kwargs.items():
 print(f"Let us take a {fruit}, which is {attribute}.")

good_fruits(kiwi="green", watermelon="large", durian="spiky")

Console

Let us take a kiwi, which is green.
Let us take a watermelon, which is large.
Let us take a durian, which is spiky.

▪ Alternatively, you can use keyword arguments (*kwarg)

Comments

▪ All *kwargs are collected and packed into a dictionary ({key}:{value})

▪ Positional arguments and *args must come before **kwargs.

“keywords”

Hint: Iterations with enumerate and range

10

Example

good_friuts = ['kiwi', 'watermelon', 'durian']

using range()
for idx in range(0, len(good_friuts)):

print(f'{idx}\t{good_friuts[idx]}')

using enumerate()
for idx, fruit in enumerate(good_friuts):
 print(f'{idx}\t{fruit}’)

Console

0 kiwi
1 watermelon
2 durian

same

printout!

▪ range(start=0, stop, step=1) - iterate through a sequence of numbers

▪ enumerate(iterable, start=0) - iterate through an iterable object and keep

track of both the index and the number.

That’s it for now.

You can now proceed to the Lab 3 exercises.

11

Questions?

	Slide 1: BIOE50010 – Programming 2
	Slide 2: Formatting
	Slide 3: Raw String
	Slide 4: Progress Check
	Slide 5: General Good Coding Practice
	Slide 6: How to Properly Document a Function?
	Slide 7: Your tasks today
	Slide 8: Hint: Non-Keyword and Keyword Args (1/)
	Slide 9: Hint: Non-Keyword and Keyword Args (2/)
	Slide 10: Hint: Iterations with enumerate and range
	Slide 11: That’s it for now. You can now proceed to the Lab 3 exercises.

