
25 October, 2024

BIOE50010 – Programming 2
Computer Lab 4

1

Binghuan Li Department of Chemical Engineering

Maria Portela Department of Bioengineering

Wenhao Ding Department of Bioengineering

Alignment in Formatting

2

Example
for i in range(-2, 3):
 print(f"{i:<5}", end='')
 for j in range(5):
 print(" . ", end='')
 print()

-2 . . .
-1 . . .
0 . . .
1 . . .
2 . . .

 Suppose the desired effect from formatting is

… which can be achieved by
The key trick here is "{i:<5}"
 :< tells Python to left-align the text
 5 is the width of the space allocated

for the text (5 characters wide inc.
the contents to be printed).

5 spaces

 Similarly, we can right-align the texts (:>) , centrally align the texts (:^), or
auto-fill the empty spaces (:char>), more examples on Python f-string
cheat sheet

https://fstring.help/cheat/
https://fstring.help/cheat/

Progress Check

3

Week 4:
we are here

Checklist: you should have mastered…

 Data structures: str, int, high-dimensional list

 Functions, namespaces, using return and
keyword / non-keyword arguments

 File I/O: read and write

 Python built-in string / list methods

 Other commonly-used Python built-in functions:
range(), enumerate(), len(), etc.

Python Basics

Object / Class

Testing

Algorithms

3

2-3

1

1

of
weeks

Inheritance

Decorators

Polymorphism

Object-Oriented Programming

4

 Two most commonly-used programming paradigms:
 Procedural (aka what you have done so far): programs are composed of one or

more functions, executed serially;
 Object-oriented: programs based on the objects, where data and functions are

‘packed’ into a user-defined data structure.

Source: Starting Out with Python, 4th Ed.

 Examples of objects: a str, list, dict…
 These are the data structures, rather than the real data!

 The prototype / blueprint of an object is structured by
the class definition.

A cookie cutter
can be used to
make different

cookies.

A class
definition can be

used to make
several objects.

new terminology!

 Sometimes, objects are also referred to as the instances.

What Does an Object Hold?

5

An object ‘packs’
(encapsulates) variables

and functions

variables

functions

attributes

methods

a.k.a.

a.k.a.

new terminology!

an object Suppose we have a box…
 The colour is red
 The state is closed

attributes

… and I can do the following things
to manipulate the property / state of
the box:
 Open the box
 Describe its properties
 Close the box
 Fold it…

methods

Example Code (1/)

6

self: an identifier refers to
the object itself, provides
access to attr. / methods

See Box_example.py on Bb

Example
class Box:
 def __init__(self, color):
 self.color = color
 self.is_open = False

 def describe_box(self):
 print(f"This is a {self.color} box.")

 def open_box(self):
 if not self.is_open:
 self.is_open = True
 print(f"The {self.color} box is now open.")
 else:
 print(f"The {self.color} box is already open.")

m
ethods

attributes
Describe the

properties / states
etc. of the object

Manipulate the
behaviours the of

the object

new terminology!

Example Code (2/)

7

Example
class Box:
 def __init__(self, color):
 self.color = color
 self.is_open = False

 def describe_box(self):
 print(f"This is a {self.color} box.")

 def open_box(self):
 if not self.is_open:
 self.is_open = True
 print(f"The {self.color} box is now open.")
 else:
 print(f"The {self.color} box is already open.")

See Box_example.py on Bb

Driver

box = Box(color="blue")

box.describe_box()

box.open_box()

box.open_box()

Console
This is a blue box.
The blue box is now open.
The blue box is already open.

constructor: __init__() is
triggered automatically when
the object is instantiated.

new terminology!

Your task today

8

Create a class Point that handles operations on Cartesian coordinates (x, y)
 Display the coordinates
 Convert (x, y) to polar coordinates (r, θ)
 Implement operator overloading e.g. addition, subtraction, multiplication…

To start…
 Take advantage of the code skeleton from the Friday live coding demonstration.
 Read all information and the sample output provided in the lab sheet carefully.
 Read sec. 17.5-17.8 in ‘Think Python 2e’ for special methods and operator overloading.

e.g., __init__, __str__, __add__, __radd__

Operator Overloading

9

 A same operator can have different behaviors when it is applied to different
data types. For example, with the ‘+’ operator;

int + int: arithmetic addition

1 + 23 ‘a’ + ‘b’‘ab’

str + str: concatenation

 Operator overloading enables users to define the rules of an operator
when it is applied to the user-defined data types. e.g., +, -, *, ==, <=

Point + Point: what will happen?

(1, 2) + (3, 4)(4, 6)

 In this situation, the rule(s) for ‘+’
need to de defined with the special
(magic) method __add__ in Point

?

That’s it for now.

You can now proceed to the Lab 4 exercises.

10

Questions?

	BIOE50010 – Programming 2
	Alignment in Formatting
	Progress Check
	Object-Oriented Programming
	What Does an Object Hold?
	Example Code (1/)
	Example Code (2/)
	Your task today
	Operator Overloading
	That’s it for now.�You can now proceed to the Lab 4 exercises.

