
25 October, 2024

BIOE50010 – Programming 2
Computer Lab 4

1

Binghuan Li Department of Chemical Engineering

Maria Portela Department of Bioengineering

Wenhao Ding Department of Bioengineering

Alignment in Formatting

2

Example
for i in range(-2, 3):
 print(f"{i:<5}", end='')
 for j in range(5):
 print(" . ", end='')
 print()

-2 . . .
-1 . . .
0 . . .
1 . . .
2 . . .

 Suppose the desired effect from formatting is

… which can be achieved by
The key trick here is "{i:<5}"
 :< tells Python to left-align the text
 5 is the width of the space allocated

for the text (5 characters wide inc.
the contents to be printed).

5 spaces

 Similarly, we can right-align the texts (:>) , centrally align the texts (:^), or
auto-fill the empty spaces (:char>), more examples on Python f-string
cheat sheet

https://fstring.help/cheat/
https://fstring.help/cheat/

Progress Check

3

Week 4:
we are here

Checklist: you should have mastered…

 Data structures: str, int, high-dimensional list

 Functions, namespaces, using return and
keyword / non-keyword arguments

 File I/O: read and write

 Python built-in string / list methods

 Other commonly-used Python built-in functions:
range(), enumerate(), len(), etc.

Python Basics

Object / Class

Testing

Algorithms

3

2-3

1

1

of
weeks

Inheritance

Decorators

Polymorphism

Object-Oriented Programming

4

 Two most commonly-used programming paradigms:
 Procedural (aka what you have done so far): programs are composed of one or

more functions, executed serially;
 Object-oriented: programs based on the objects, where data and functions are

‘packed’ into a user-defined data structure.

Source: Starting Out with Python, 4th Ed.

 Examples of objects: a str, list, dict…
 These are the data structures, rather than the real data!

 The prototype / blueprint of an object is structured by
the class definition.

A cookie cutter
can be used to
make different

cookies.

A class
definition can be

used to make
several objects.

new terminology!

 Sometimes, objects are also referred to as the instances.

What Does an Object Hold?

5

An object ‘packs’
(encapsulates) variables

and functions

variables

functions

attributes

methods

a.k.a.

a.k.a.

new terminology!

an object Suppose we have a box…
 The colour is red
 The state is closed

attributes

… and I can do the following things
to manipulate the property / state of
the box:
 Open the box
 Describe its properties
 Close the box
 Fold it…

methods

Example Code (1/)

6

self: an identifier refers to
the object itself, provides
access to attr. / methods

See Box_example.py on Bb

Example
class Box:
 def __init__(self, color):
 self.color = color
 self.is_open = False

 def describe_box(self):
 print(f"This is a {self.color} box.")

 def open_box(self):
 if not self.is_open:
 self.is_open = True
 print(f"The {self.color} box is now open.")
 else:
 print(f"The {self.color} box is already open.")

m
ethods

attributes
Describe the

properties / states
etc. of the object

Manipulate the
behaviours the of

the object

new terminology!

Example Code (2/)

7

Example
class Box:
 def __init__(self, color):
 self.color = color
 self.is_open = False

 def describe_box(self):
 print(f"This is a {self.color} box.")

 def open_box(self):
 if not self.is_open:
 self.is_open = True
 print(f"The {self.color} box is now open.")
 else:
 print(f"The {self.color} box is already open.")

See Box_example.py on Bb

Driver

box = Box(color="blue")

box.describe_box()

box.open_box()

box.open_box()

Console
This is a blue box.
The blue box is now open.
The blue box is already open.

constructor: __init__() is
triggered automatically when
the object is instantiated.

new terminology!

Your task today

8

Create a class Point that handles operations on Cartesian coordinates (x, y)
 Display the coordinates
 Convert (x, y) to polar coordinates (r, θ)
 Implement operator overloading e.g. addition, subtraction, multiplication…

To start…
 Take advantage of the code skeleton from the Friday live coding demonstration.
 Read all information and the sample output provided in the lab sheet carefully.
 Read sec. 17.5-17.8 in ‘Think Python 2e’ for special methods and operator overloading.

e.g., __init__, __str__, __add__, __radd__

Operator Overloading

9

 A same operator can have different behaviors when it is applied to different
data types. For example, with the ‘+’ operator;

int + int: arithmetic addition

1 + 23 ‘a’ + ‘b’‘ab’

str + str: concatenation

 Operator overloading enables users to define the rules of an operator
when it is applied to the user-defined data types. e.g., +, -, *, ==, <=

Point + Point: what will happen?

(1, 2) + (3, 4)(4, 6)

 In this situation, the rule(s) for ‘+’
need to de defined with the special
(magic) method __add__ in Point

?

That’s it for now.

You can now proceed to the Lab 4 exercises.

10

Questions?

	BIOE50010 – Programming 2
	Alignment in Formatting
	Progress Check
	Object-Oriented Programming
	What Does an Object Hold?
	Example Code (1/)
	Example Code (2/)
	Your task today
	Operator Overloading
	That’s it for now.�You can now proceed to the Lab 4 exercises.

