
1 November, 2024

BIOE50010 – Programming 2

Computer Lab 5

1

Binghuan Li Department of Chemical Engineering

Maria Portela Department of Bioengineering

Wenhao Ding Department of Bioengineering

Object-Oriented Programming

2

▪ Two most commonly-used programming paradigms:

▪ Procedural: programs are composed of one or more functions, executed serially;

▪ Object-oriented: programs based on the objects, where data and functions are
‘packed’ into a user-defined data structure.

Source: Starting Out with Python, 4th Ed.

▪ Examples of objects: str, list, dict…

▪ These are the data structures, rather than the real data!

▪ The prototype / blueprint of an object is structured by
the class definition.

A cookie cutter

can be used to

make different

cookies.

A class

definition can be

used to make

several objects.

new terminology!

▪ Sometimes, object is also referred to as instance.

Progress Check

3

Week 5:

we are here

Checklist: you should have mastered…

▪ Concepts of OOP and definition of the

terminologies: class, object, instance,

abstraction, encapsulation, attributes, methods

▪ Basic OOP syntax: __init__, self, how to

instantiate an object, call methods, …

▪ Special methods and operator overloading:

__str__, __add__, __radd__, __eq__, etc.

Python Basics

Object / Class

Testing

Algorithms

3

2-3

1

1

of

weeks

Inheritance

Decorators

Polymorphism

4Source: https://www.reddit.com/r/ProgrammerHumor/comments/gu4k3y/oops/

Four Pillars of OOP

Four Pillars of OOP

5

OOP focuses on the essential

characteristics of an object from

the users’ perspectives

Abstraction

OOP hides the details of the

implementation of an object.

Encapsulation

OOP allows a child class to

inherit features from the parent

class(es)

Inheritance

OOP allows the child class to

override features inherited from

its parent class(es)

Polymorphism

1

3

2

4

new terminology!

Abstraction & Encapsulation

6

OOP focuses on the essential

characteristics of an object from

the users’ perspectives

Abstraction

OOP hides the details of the

implementation of an object.

Encapsulation
1 2

new terminology!

a paracetamol capsule

perspective of the

pharmaceutical company:

the effective ingredients

perspective of the

patient: a pain-killer

capsule

developer

side

user

side

Inheritance & Polymorphism

7

OOP allows a child class to

inherit features from the parent

class(es)

Inheritance

OOP allows the child class to

override features inherited from

its parent class(es)

Polymorphism
3 4

new terminology!

dogs

cats

m
a
m

m
a
ls

All mammals have some common characteristics, e.g.

▪ warm-blooded

▪ feed their babies with milk

Dogs and cats have unique characteristics, e.g.

▪ Dogs: good sense of smell

▪ Cats: cannot taste sweetness

inheritance

polymorphism

“having many forms”

Coding Example

8

Mammals

Dogs

“single” inheritance

super

class

sub-

class

new terminology!

Example

class Mammal:
 def __init__(self, name):
 self.name = name

 def warm_blooded(self):
 return f"{self.name} is warm-blooded."

 def speak(self):
 return "Grrrr!"

class Dog(Mammals):
 def __init__(self, name):
 super().__init__(name)

 def speak(self):
 return "Bark!"

speak() method in Dog

overrides the speak() method

in Mammal: polymorphism

warm_blooded()

method in Dog is

inherited from the

Mammal class

See Mammal_example.py on Bb

Inheritance Can Be in Many Forms

9

Be very cautious about the yo-yo problem when

using multi-level inheritance!

▪ Excessive maintenance challenges

▪ Compensated readability

“multi-level” inheritance

A B C

“parent”

D

…

“child”

“grand child”

“great grand child”

A

B

C

“multiple” inheritance

https://en.wikipedia.org/wiki/Yo-yo_problem

Your task today

Refactor the Tic Tac Toe game using object-oriented
programming. You are asked to define two classes

▪ Board() class: a class that should be able to fit into any
board games.

▪ TicTacToe() class: a sub-class of Board() but also
with the Tic Tac Toe-specific features.

… and a main() function to drive the Tic Tac Toe game.

10

super class

sub-class

A

B

Board()

TicTacToe()

To start…

▪ Revise your worked solution to Lab session 1. What features/procedures are
common for all board games? What features/procedures are unique for Tic
Tac Toe only?

▪ Study the sample scripts for the syntax of inheritance of OOP.

That’s it for now.

You can now proceed to the Lab 5 exercises.

11

Questions?

12

Board

+ print_board()
+ update_board()
+ is_board_full()

TicTacToe

+ swap_player()
+ check_win()

set/switch

player

print board

start

Position

(1-9)

valid

input
update board

print board

end

win?

tie?

end

No

No

Yes

Yes

Yes

(from lab 1)

	Slide 1: BIOE50010 – Programming 2
	Slide 2: Object-Oriented Programming
	Slide 3: Progress Check
	Slide 4: Four Pillars of OOP
	Slide 5: Four Pillars of OOP
	Slide 6: Abstraction & Encapsulation
	Slide 7: Inheritance & Polymorphism
	Slide 8: Coding Example
	Slide 9: Inheritance Can Be in Many Forms
	Slide 10: Your task today
	Slide 11: That’s it for now. You can now proceed to the Lab 5 exercises.
	Slide 12

