
24 November, 2024

BIOE50010 – Programming 2

Computer Lab 8

1

Binghuan Li Department of Chemical Engineering

Maria Portela Department of Bioengineering

Wenhao Ding Department of Bioengineering

find()

2

A C G T A G C G Tsequence

1 2 3 4 5 6 7 8 9

C G Tsegment …
? ? ?

▪ Two ways to realise the matching algorithm: find() and find_faster()

▪ Element to element comparison: intuitive to code, but slow (2 for loops)

▪ List to list comparison: concise and faster (1 for loop)

▪ String to string comparisons should work out, in principle.

▪ Try out yourself!

Questions outside the classroom?

Progress Check

3

Week 8:

we are here

Checklist: you should have mastered…

▪ How to implement a simple algorithm, profile

(time) the code, and perform optimization to

improve the runtime efficiency.

Python Basics

Object / Class

Testing

Algorithms

3

3

1

1

of

weeks

Inheritance

Decorators

Polymorphism

Decorators

4

Example from debug_timer.py

def debug_timer(some_function):

 def wrapper_function(*args, **kwargs):
 t0 = time.time()
 some_function(*args, **kwargs)
 dt = time.time() - t0
 print(f'Elapsed time: {dt} seconds’)

 return wrapper_function

@debug_timer
def original_function(data1, data2):
 print(f'running fcn with {data1} and {data2}')

original_function('happy', 1)

A decorator is a special type of function that is used to

modify the behaviour of another function or method.

original_function is decorated with

@debug_timer. When debug_timer

invoked from original_function,

some_function = original_function

2

original_function is called with the

arguments 'happy', 1

1

debug_timer calls wrapper_function

by revoking the return statement:

some_function will be executed, as well

as being timed

3

1

2

3

Static Methods

▪ In OOP, we can define a function that does

not rely on any instance attributes

▪ Utility functions

▪ Basis functions (or, immutable things)

▪ There are two possible ways to

implement such a function:

▪ Using a normal function (defined outside

of the class)

▪ Using a static method (@staticmethod,

defined within the class)

▪ Example: check if someone’s age > 18.

5

Example 1: using a standalone function

class Person:
 def __init__(self, age):
 self.age = age;
 self.adult = is_adult(age);

def is_adult(age):
 return age > 18;

Example 2: using a static method

class Person:
 def __init__(self, age):
 self.age = age;
 self.adult = self.is_adult(age);

 @staticmethod
 def is_adult(age):
 return age > 18;

decorator (must have)

no need to inc. self

revoke with self

Class Methods

6

Example

from datetime import date

class Person:
 def __init__(self, age = 0):
 self.age = age

 @classmethod
 def fromBirthYear(cls, year):
 return cls(date.today().year - year)

1. Return the calculated age

2. Construct a new class

3. Assign to self.age

Driver code

p1 = Person(20)
print(p1.age)

p2 = Person.fromBirthYear(2004)
print(p2.age)

▪ In OOP, we are allowed to instantiate

a new object in two ways

▪ Directly calling the class constructor

▪ Using a class method

(@classmethod, a method defined

within the class)

▪ Example: calculating age from birth

year

▪ A broader usage: class methods can

modify class attributes

decorator (must have)

The same

effects!

Your task today

Four mini-tasks, featuring the exercises of

▪ Animation with cmd/Terminal

▪ Decorators and Wrapper functions

▪ Static method, class method, and property function

7

To start…

▪ Study the Python scripts from your Friday lecture.

▪ Read and study the sample output from the lab sheet carefully.

▪ Revise the Command Prompt / Terminal commands listed in the Lab 2 sheet and slides.

That’s it for now.

You can now proceed to the Lab 8 exercises.

8

Questions?

	Slide 1: BIOE50010 – Programming 2
	Slide 2: find()
	Slide 3: Progress Check
	Slide 4: Decorators
	Slide 5: Static Methods
	Slide 6: Class Methods
	Slide 7: Your task today
	Slide 8: That’s it for now. You can now proceed to the Lab 8 exercises.

