
5 October, 2025

BIOE50010 – Programming 2
Computer Lab 1: Revision of Programming 1

1© Imperial College London

Binghuan Li, Maria Portela, Gauthier Boeshertz, Samuel George-White,
Yilin Sun, Kamrul Hasan, Wenhao Ding, Siyu Mu, Lito Chatzidavari

An Indictive Timeline

2

Programming 2

Arduino Project

Signals and Control

Programming 3

Project

Year 1 Year 2 Year 4Year 3

Digital Bio-signal
Processing

Image Processing

Computational
Neuroscience

Reinforcement
Learning

Programming 1

MATLAB

Modelling in Biology

Animal Locomotion

Probability and
Statistics

AI for Drug
Discovery

Project

Brain Machine
Interfaces

Project
Python

MATLAB

Others (e.g., Java)

Unfixed, could be any

* Information retrieved from the Module Descriptor 2025-26. Indictive only.

The Programming 2 Course

3

Learning Outcomes*

 Write, debug, compile, and run programs using Python;

 Use data structures appropriately;

 Know how to create and use algorithms;

 Explain and apply concepts of object-oriented programming.

Assessment Modes*
 1 timed assignment (50%) + 1 live programming test (50%).

 To be soon communicated by the module leader directly to you.

* Information retrieved from the Module Descriptor 2025-26. Indictive only.

Envision: “Coding as fluently as writing an email.”

Rough Structure & Rationale

4

Lectures (2 hours × 9 weeks*)

Labs (2 hours × 10 weeks*)

 Introduction to general coding concepts with
definitions and live coding examples.
 Aim: to enhance your understanding of core concepts

and techniques.

Functions

File Handling

Data Types

Control Flow

Modules

OOP

Testing

Algorithms

 Exercises to apply the concepts from lectures
delivered in self-learning and peer learning fashion.
 Aim: apply coding concepts in a practical setting.

2-3

2-3

1

1

of
weeks

* As per module timetable on CELCAT Calendar. Indictive only.

Resources & References

5

Where to Seek Help?
 Module leader: Dr James Choi <j.choi@imperial.ac.uk>

 GTAs: Questions will be actively monitored on Ed Discussion
 General programming advices (within or beyond this course) are welcomed.

 Python 3.13.5 documentation and Python’s built-in help() function

 Textbooks, online resources, weekly example notebook.

Think Python 2e,
by A. Downey

Starting Out with Python,
by T. Gaddis

An ‘official’ textbook - rigorous
and comprehensive, yet as
informative as a dictionary,
allowed for use during exams.

An ‘unofficial’ textbook - friendly for
Python beginners with intuitive
explanations, though sometimes
shallow for advanced coders.

https://docs.python.org/release/3.13.5/
https://docs.python.org/release/3.13.5/

Will It Be Tough?

6

“There are only two kinds of
languages: the ones people
complain about and the ones
nobody uses.”

Bjarne Stroustrup, creator of C++

“The only way to learn a new
programming language is by writing
programs in it.”

Dennis Ritchie, creator of C

“Talk is cheap. Show me the code.”
Linus Torvalds, creator of Linux & GitMe internally: “… probably he/she only wrote

‘Hello, World!’ once.”

How To Nail Programming 2?
 Syntax, syntax, syntax

 Don’t rush – but please keep up! Save your
work, log your progress, make the most of
your time.

 “Why doesn’t my code work?” isn’t a helpful
question. Be specific, so others can help you
debug.

 Use Stack Overflow / generative AI
models wisely – the goal is learning, not just
finishing first. Be responsible for your work!

 Working code is the best code.
7

for i in range (0,10):
␣␣␣␣print(i)

for i in range (0,10):
print(i)

Correct syntax

Erroneous syntax: indentation

for i in range (0,10):
␣␣␣␣print(“i equals to”)
␣␣␣␣␣␣␣␣print(i)

 not indented

 Inconsistent indentation

8

Progress Check

9

Functions

File Handling

Data Types

Control Flow

Modules

OOP

Testing

Algorithms

2-3

2-3

1

1

of
weeks

Week 1:
we are here

 Data types: int, str, list, dict, …

 Operations: arithmetic (+, -), comparison (==),
logical (True, False)

 Control flows: if…elif…else condition,
while condition, for loop

 Functions and scopes: definition a function,
pass and return data to/from function

Revision Points (from Programming 1)

Your task today: Tic Tac Toe

10

1 2 3

1

2

3

column #
row #

step 1 player X row 2 col 2

X

step 2 player O row 1 col 3

O
step 3 player X row 1 col 2

X step 4 player O row 3 col 2

O
step 5 player X row 2 col 1X
step 6 player O row 3 col 3O
step 7 player X row 2 col 3

X

game over, player X win!

A 3×3 game board

2 players:
X and O play in turn

1

23

4

5

6

7

Note: A tie occurs when the board is full and neither player has won.

Your task today

1. How many steps do you need? Draw yourself a flowchart on a piece of paper, it
may include…

 Format a 3×3 board;
 Switch/set a player, take the move;
 Update the cells in the 3×3 board;
 Check if the termination condition reached: X/O win the game? Tie?

2. If you code this flow using functions, how many functions you may need? (i.e.,
how many functions are reusable?)

3. Error/exception handling: check user input – when to accept or reject?
11

Write a Python programme to realise the game Tic Tac Toe. Modularise
your programme (using functions), and your code should consider the
following aspects:

Modular Programming

12

import math

def pythagoras(a, b):
 c = math.sqrt(a**2 + b**2)
 return c

def main():
 a = 3
 b = 4
 c = pythagoras(a, b)
 print(c)

if __name__ == “__main__”:
 main()

Example
Import existed functions
from the module math

Function definition for
the Pythagorean
theorem

Function definition to use
the pythagoras function

Trigger the main
function to execute

Modules (functions)
are put together to make
up one executable
program.

• Functions are
separately defined,
hence, reusable

• Functions are
triggered serially in a
main script (caller)

That’s it for now.

You can now proceed to the Lab 1 exercise.

13

Questions?

14

set/switch player

print board

start

position
 1-9

valid
input? update board

print board

end

win?

tie?

end

No

No

Yes

Yes

Yes

	BIOE50010 – Programming 2
	An Indictive Timeline
	The Programming 2 Course
	Rough Structure & Rationale
	Resources & References
	Will It Be Tough?
	How To Nail Programming 2?
	Slide Number 8
	Progress Check
	Your task today: Tic Tac Toe
	Your task today
	Modular Programming
	That’s it for now.�You can now proceed to the Lab 1 exercise.
	Slide Number 14

