IMPERIAL

BIOE50010 — Programming 2

Computer Lab 10: Assignment Q&A

Binghuan Li, Maria Portela, Gauthier Boeshertz, Samuel George-White,
Yilin Sun, Kamrul Hasan, Wenhao Ding, Siyu Mu, Lito Chatzidavari

8 December, 2025

© Imperial College London

N.B. — What’s Next?

Assignment week Q&A sessions
= Monday 9:00 -11:00 AM, RSM G038
» Thursday 12:00 — 6:00 PM, RSM 338

= Questions outside the classroom: Ed Discussion

= Deadline for the assignment: 9:00 AM on Friday 12 December 2025
= Questions will not be answered after 9:00 AM on Thursday 11 December 2025

= Arevision session has been scheduled on Monday 5 January 2026, 1:00 - 2:00
PM, at RSM 131. (Thoughts?)

* Live coding exam on Friday 9 January 2026, 10:00 AM - 12:00 PM

Assignment Myth-busting %
» Assumptions are assumptions are assumptions.
= “Will you crush my code with an irregular-shaped board ?” No.
= You can use additional methods, e.g. helper functions. Rubber duck debugging

= However, additional methods will not be assessed directly.

= They must not replace or conflict with the behaviours of the required methods.
= Additional functionalities may be a bonus, but not a must.

= “Will I be penalised for the compensated efficiency?” Time it yourself.

= Efficiency is only meaningful if you compare using the same setup.

= ... and it will only be measured if your code already works correctly.

= “The assignment is unit-tested, so readability does not matter.”

= Not True! Think this as how would you teach us to reproduce your brilliant work!

https://en.wikipedia.org/wiki/Rubber_duck_debugging

Questions?

Appendix 1: General Good Coding Practice

= Code is read much more often than it is written. Code should always be written in a way
that promotes readability.

= PEP 8 provides coding style guide for Python programming from the authors’
perspectives. Key advice to summarise:

1. Use intention-revealing, descriptive names
2. Adhere to the proper code layout (e.g., use consistent 4-space indentation)
3. Keep comments, but good comments do not excuse unclear code

Identifier Type Example Name Naming Convention
variables playBoard Lower Camel Case
displayBoard Lower Camel Case
functions
display board Snake Case
classes BioengPerson Upper Camel Case

constants

MAX_CAPACITY

Constant Case

Avoid using names e.g.,
= mylList «— Vvague

" datal <— “noisy

https://peps.python.org/pep-0008/#programming-recommendations
https://peps.python.org/pep-0008/#programming-recommendations

Appendix 2: Documenting a Function

consistent
4-space
indentation

l l » argument annotation: a and b are float

(

def calculate pythagoras(a: float), b: ifloat) -> float:—— return annotation:

Calculate the hypotenuse of a right-angled triangle.

Args:
a (float): Length of side a.
b (float): Length of side b.

Returns:
float: Length of the hypotenuse.

Example:
>>> calculate pythagoras(3, 4)
5.0

c = (a**2 + b**2)**Q.5

return c

%

c is float

Documentation strings:

Function description

Arguments

Return

Example usage

IMPERIAL

Debriefing of Programming 2 Labs

8 December, 2025

Focus:

P rog ram m i n g 2 * Design data structures using classes.

* Apply relationships through inheritance and polymorphism.
« Enhance designs with decorators and special methods.

I

e BN ’7 AN
| Control Flow | [| Object& Class |1
| ' I |
p : Y |
: Data Types : : Special Methods |
| ' 1 : Y
l Functions : | Inheritance : f [Algorithms] |
| 1 I I
: : | | ,)
: File Handling : :> : : :> : [Testing :
| | | I
\ Modules ! \ Decorators ! | Al, ML, DL I
\; e e — [— ;/ / \ -— e .- e - -, - . . /
f f
Focus: Focus:
» Grasp Python syntax and logic. * Implement and test efficient algorithms.
» Use data types, control flow, and functions. » Evaluate code performance and reliability.
» Apply modules and file handling. » Recognize the role of AL/ML in research.

9

Beyond Programming 2

Arduino Project

Year 1 = Year 2 — Year 3 Year 4
9 /’ _________ \
v) .
T Programming 1] Programming 2 \ Programming 3 i%?&itggzgzl
N7 4 Digital Bio-signal Reinforcement
T MATLAB

Signals and Control

Project

Python

MATLAB

Others (e.g., Java)

Unfixed, could be any

~

Processing

Image Processing

~

J

~

Modelling in Biology

Probability and
Statistics

J

Project

* Information retrieved from the Module Descriptor 2025-26. Indictive only.

L Learning

\

Animal Locomotion

Al for Drug
L Discovery

J \C

Brain Machine
Interfaces

Vs

Project

10

Exam

* Do not just look at code and say “oh,
that makes sense”.

» Do write the code from a blank page.

* The syntax of every line of code must
make sense to you.

* The algorithm that’s being
iImplemented needs to make sense to
you.

= Make sure you are familiar with
Python IDLE interface before exam.

Does your

th No, but it can hurt you
pg O bite?

in other ways.

Indentation Error:
Expected an indented block

/

He doesn't.

11

T h e E n d } Bioeng Coding Beatg

2

on Spotify

* Have assignment questions? We’'re on Ed Discussion until
9:00 AM on Thursday 11 December 2025

* Beyond this module...

= |f your coding life does not go on hiatus after this course, the
real fun is yet to come.

» GTA feedback on SOLE... we hope we've earned your nice

words!

= Until next time! Merry Christmas!

12

https://open.spotify.com/playlist/1gSz1B8eaCX82KRrKc8j5J?si=892ac6b814b54975&pt=a68957fae61eb01a5ffee9745ade9488
https://open.spotify.com/playlist/1gSz1B8eaCX82KRrKc8j5J?si=892ac6b814b54975&pt=a68957fae61eb01a5ffee9745ade9488
https://open.spotify.com/playlist/1gSz1B8eaCX82KRrKc8j5J?si=892ac6b814b54975&pt=a68957fae61eb01a5ffee9745ade9488

14629.202110 14629.202210 14629.202310

BIOE50010 - Programming 2 2021-2022 BIOE50010 - Programming 2 2022-2023 BIOE50010 - Programming 2 2023-2024
Open Open Open
Multiple Instructors * Multiple Instructors * Multiple Instructors *

14629.202410 14629.202510 More years to follow...
BIOE50010 - Programming 2 2024-2025 BIOE50010 - Programming 2 2025-2026

Open Open

Multiple Instructors * Multiple Instructors * D

13

	Slide 1: BIOE50010 – Programming 2
	Slide 2: N.B. – What’s Next?
	Slide 3: Assignment Myth-busting
	Slide 4: Questions?
	Slide 5: Appendix 1: General Good Coding Practice
	Slide 6: Appendix 2: Documenting a Function
	Slide 8: Debriefing of Programming 2 Labs
	Slide 9: Programming 2
	Slide 10: Beyond Programming 2
	Slide 11: Exam
	Slide 12: The End }
	Slide 13

