
12 October, 2025

BIOE50010 – Programming 2
Computer Lab 2: Data Structures and File Handling

1© Imperial College London

Binghuan Li, Maria Portela, Gauthier Boeshertz, Samuel George-White,
Yilin Sun, Kamrul Hasan, Wenhao Ding, Siyu Mu, Lito Chatzidavari

Weekly Example Notebooks

3

Selected topics for Week 1:

 Conditions and Loops

 Functions and Modularisation

Link

Selected topics for Week 2:

 File I/O

 String Methods

 List Methods

On Your
Blackboard

Feedback on Week 1
 Be careful about the Python’s condensed syntax (commonly seen in AI solutions) .

 Not recommended unless you’re experienced, as it compensates your code
readability and maintainability.

5

board = []
for _ in range(3):
 row = []
 for _ in range(3):
 row.append(" ")
 board.append(row)

board = [[" " for _ in range(3)] for _ in range(3)]

Using “list comprehension”

… which is equivalent to
Create a 2D
list structure
using nested
for-loops

Feedback on Week 1 – board printing

6

Code snippet from tictactoe.py
board = [“ ”, “ ”, “ ”, “ ”, “ ”, “ ”, “ ”, “ ”, “ ”]

def displayBoard(board):
 print(board[0] + '|' + board[1] + '|' + board[2])
 print('-----')
 print(board[3] + '|' + board[4] + '|' + board[5])
 print('-----')
 print(board[6] + '|' + board[7] + '|' + board[8])

Initialize a 1D list with 9
elements (spaces), also
[“ ”]*9

All these are just
formatting!

• Format your output, rather
than directly printing out a
2D list…

board = [[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]]
print(board)

This won’t format
your board…
unfortunately

Progress Check

8

Functions

File Handling

Data Types

Control Flow

Modules

OOP

Testing

Algorithms

2-3

2-3

1

1

of
weeks

Week 2:
we are here

Revision Points (from week 1)

 Data structures: int, float, str, list, dict

 Typecasting: e.g., str “2” to int 2

 Control flow: conditions, loops, break, continue

 Input and print

 Functions and concept of code modularisation

File Input/Output (I/O)

9

read from
file

write to
file

open the
file

close the
file

f.read()

f.readline()

f.readlines()

f.write()

f.writeline()

f.writelines()

f.close()

f = open(filename, mode)

f = open(…) returns a file object.
Possible things you can do with the
file (mode):

 ‘r’ read (default)
 ‘w’ write
 ‘a’ append
 ‘x’ create
 ‘b’ binary

Close the file once finished all
operations!

You process the file: read or write

file object

• A program saves into a file for later use, it writes data into a file; the data can be
read into the program from the file in future.

String and List Methods
 After reading data from a file, the contents are

saved in a structure such as a string or a list.

 It is your task to process the raw readings
before using them for further analysis: clean,
transform, sort, organise…

 These operations can be done with string and
list methods, e.g.,
 Use .split() or .strip() to process text strings.
 Use .append() or .sort() to manage lists.

10

Open a file in Python

Close the file

Read from the file, and
process your readings

Example of Using String Methods

11

T h e q u i c k b r o w n f o x , j u m p s o v e r * t h e l a z y d o g .

T h e q u i c k b r o w n f o x

j u m p s o v e r t h e l a z y d o g .

text.split(',')

.split(delimiters): split a string by specified delimiters

j u m p s o v e r * t h e l a z y d o g .

T h e q u i c k b r o w n f o x

.strip(): remove white spaces (or specified strings) at both ends of the string

“␣␣T h e q u i c k b r o w n f o x j u m p s o v e r t h e l a z y d o g␣␣”

“ T h e q u i c k b r o w n f o x j u m p s o v e r t h e l a z y d o g ”

text.strip()

text_2.split('*')

text =

text =

= text_2

Your tasks today
1. Familiarize yourself with OS commands in Windows Command Prompt

or Mac Terminal (these are NOT the Python tasks!).

2. Three mini tasks in Python on file I/O, with use of string/list methods:
 Task 1: read a poem from a .txt file
 Task 2: read and format the DNA to protein data from a .csv file
 Task 3: read and process nucleotide sequences

12

To start…
1. Syntax learning: lecture slides and weekly example notebook.
2. Coding requirements: your output must match the given console output.
3. Use the appendices when necessary.

That’s it for now.

You can now proceed to the Lab 2 exercises.

13

Questions?

Appendix 1: Summary of OS Commands

14

Tasks Windows Command
(to be used in Command Prompt)

Unix-like OS Command
(to be used in Terminal on MacOS)

change directory (folder) cd cd

directory listing dir ls -l

copy a file copy cp

move a file (“cut”) move mv

delete a file del rm

clear screen cls clear

display current directory location chdir pwd

create a new directory md mkdir

delete a directory rmdir rm -rf/rmdir

 These are NOT Python commands!
 They are used to perform file management tasks (e.g., copy and paste files) in

operating systems (OS) without relying on the graphical user interfaces.

Appendix 2: More on File Input/Output (I/O)

15

Why do I need to close the file?
 more file handlers = more space used in RAM → performance compensation
 many changes to files in python do not go into effect until the file is closed
 likelihood for data corruption
 theoretically, the number of file handlers has a limit

C:

Users

lbing

Desktop

prog2

where I am

file to open

hey.txt

Relative path and absolute path

f = open('C:/Users/lbing/Desktop/prog2/hey.txt', 'w')

f = open('./prog2/hey.txt', 'w')

 Using absolute path: starting from the root directory

 Using relative path: with respect to the current directory

full path starting from C: disk

the current directory (…\Desktop)

Appendix 3: Potentially Useful String Methods

16

Method Description

startswith(substring) The method returns true if the string starts with substring.

endswith(substring) The method returns true if the string ends with substring.

find(substring) The method returns the lowest index in the string where substring is
found. If substring is not found, the returns -1.

replace(old, new) The method returns the string with all instances of old replaced by new.

lstrip(char) The method returns a copy of the string with the specified character
(char) that appear at the beginning (left) of the string removed.

rstrip(char) The method returns a copy of the string with the specified character
(char) that appear at the end (right) of the string removed.

split(delimiter) The method returns a list containing the words in the string separated by
the specified delimiter, by default the delimiter is a whitespace.

Appendix 4: Potentially Useful List Methods

17

Method Description

append(item) Adds item to the end of the list.

index(item) Returns the index of the first element whose value is equal to item.
A ValueError exception is raised if item is not found in the list.

insert(index, item) Inserts item into the list at the specified index.

sort() Sorts the items in the list so they appear in ascending order (from the
lowest value to the highest value).

remove(item) Removes the first occurrence of item from the list. A ValueError
exception is raised if item is not found in the list.

reverse() Reverses the order of the items in the list.

18
By Brij kishore Pandey

	BIOE50010 – Programming 2
	Weekly Example Notebooks
	Feedback on Week 1
	Feedback on Week 1 – board printing
	Progress Check
	File Input/Output (I/O)
	String and List Methods
	Example of Using String Methods
	Your tasks today
	That’s it for now.�You can now proceed to the Lab 2 exercises.
	Appendix 1: Summary of OS Commands
	Appendix 2: More on File Input/Output (I/O)
	Appendix 3: Potentially Useful String Methods
	Appendix 4: Potentially Useful List Methods
	Slide Number 18

