
20 October, 2025

BIOE50010 – Programming 2

Computer Lab 3: Modular Programming

1© Imperial College London

Binghuan Li, Maria Portela, Gauthier Boeshertz, Samuel George-White,

Yilin Sun, Kamrul Hasan, Wenhao Ding, Siyu Mu, Lito Chatzidavari

Feedback on Week 2 - Paths

2

C:

Users

lbing

Desktop

prog2

where I am

file to open

hey.txt

Relative path and absolute path

f = open('C:/Users/lbing/Desktop/prog2/hey.txt', 'w')

f = open('./prog2/hey.txt', 'w')

▪ Using absolute path: starting from the root directory

▪ Using relative path: with respect to the current directory

full path starting from C: disk

the current directory (…\Desktop)

▪ In relative path:

▪ A single dot (.) refers to the current directory.

▪ Double dots (..) refer to the parent directory (w.r.t. the current directory).

▪ Caveat! ./ (current directory) is different from / (root directory): the dot matters!

Feedback on Week 2 - Formatting

▪ f-string formatting starts with an f before the opening quotation mark.

▪ Each individual variable is enclosed within a pair curly brackets {}:

3

Code snippet from extract_dna2protein.py

data = [[‘T’, ‘T’, ‘T’, ‘Phe’, ‘F’, ‘Phenylalanine’],
 [‘T’, ‘T’, ‘C’, ‘Phe’, ‘F’, ‘Phenylalanine’]]

print(f'{data[0][0]}{data[0][1]}{data[0][2]}\t{data[0][3]}\t{data[0][4]}\t{dat
a[0][5]}')

TTT Phe F Phenylalanine

print('{}{}{}\t{}\t{}\t{}'.format(data[0][0], data[0][1], data[0][2],
data[0][3], data[0][4], data[0][5])

▪ Alternatively, one can use the format method:

Feedback on Week 2 - Raw String

4

>> Hi
Hello

ConsoleExample

myStr = 'Hi\nHello'
print(myStr)

▪ Python raw string (‘r’) treats the backslash as a literal character.

>> Hi\nHello

ConsoleExample

myStr = r'Hi\nHello'
print(myStr)

▪ …which can be useful to deal with the path separator (in Windows):

f = open('C:\Users\lbing\Desktop\lab2\the_road_not_taken.txt', 'r')

▪ By default, Python treats the backslash (\) as a special character: e.g., \t, \n

f = open(r'C:\Users\lbing\Desktop\lab2\the_road_not_taken.txt', 'r')



☺

Progress Check

5

Functions

File Handling

Data Types

Control Flow

Modules

OOP

Testing

Algorithms

3

2-3

1

1

of

weeks

Week 3:

we are here

Revision Points (from week 2)

▪ File I/O: open, read, write, close.

▪ Using loops to read lines recursively.

▪ Print formatting with f-string

▪ String methods: .count(), .strip(), .split()

▪ List methods: .append()

Your tasks today

▪ Four mini tasks on modular programming:

▪ Task 1: Calculate radius and angle from a pair of Cartesian coordinates

𝜃 = atan
𝑦

𝑥
/𝜋 ∗ 180°

▪ Task 2: Passing an unknown number of arguments into a function

▪ Task 3: The Collatz conjecture

▪ Task 4: Plotting marks on a user-defined board

6

To start…

▪ Read all information and the sample output provided in the lab carefully

▪ Consult the help pages for the string / list methods provided in Lab 2 slides

▪ Study the non-keyword and keyword arguments attached to the slides.

That’s it for now.

You can now proceed to the Lab 3 exercises.

7

Questions?

Appendix 1: Namespace

8

Example

x = 'global!'

def print_x():
 x = 'local!'
 print(x)

def main():
 print_x()
 print(x)

if __name__ == '__main__':
 main()

▪ A namespace holds a set of names that belongs to

a specific context (scope) within the program.

▪ If you create a variable within a function, that

variable only exists in that function.

Console

>> global!
Local!

e.g., variables

within a function

e.g., variables at

the script top

e.g., print(),
__name__

local

namespace

global

namespace

built-in

namespace

same variable

name but hold

different values

Appendix 2: Non-Keyword Argument Functions

9

Suppose you are defining a function with arbitrary number of arguments…

Example

def good_fruits(*fruits):
 for item in fruits:
 print('let us take a', item)

good_fruits('kiwi', 'watermelon', 'durian')

Console

let us take a kiwi
let us take a watermelon
let us take a durian

▪ You can use non-keyword argument functions (*arg)

Comments

▪ The asterisk * is known as the unpacking operator.

▪ All *args are collected and packed into a tuple (hence, use loops)

▪ Positional arguments must come before *args: def call_greeting(greeting, *names)

positional

argument *args

Appendix 3: Keyword Argument Functions

10

Example

def good_fruits(**fruits):
 for fruit, attribute in fruits.items():
 print(f"Let us take a {fruit}, which is {attribute}.")

good_fruits(kiwi="green", watermelon="large", durian="spiky")

Console

Let us take a kiwi, which is green.
Let us take a watermelon, which is large.
Let us take a durian, which is spiky.

▪ Alternatively, you can use keyword argument functions (**kwarg)

Comments

▪ All *kwargs are collected and packed into a dictionary ({key}:{value})

▪ Positional arguments and *args must come before **kwargs.

“keywords”

Appendix 4: enumerate() and range()

11

Example

good_friuts = ['kiwi', 'watermelon', 'durian']

using range()
for idx in range(0, len(good_friuts)):

print(f'{idx} {good_friuts[idx]}')

using enumerate()
for idx, fruit in enumerate(good_friuts):
 print(f'{idx} {fruit}')

Console

0 kiwi
1 watermelon
2 durian

same

output!

These are two useful functions to iterate over sequences in loops.

▪ range(start=0, stop, step=1) - iterate through a sequence of numbers

▪ enumerate(iterable, start=0) - iterate through an iterable object (list, tuple,

dictionary) and keep track of the index.

	Default Section
	Slide 1: BIOE50010 – Programming 2
	Slide 2: Feedback on Week 2 - Paths
	Slide 3: Feedback on Week 2 - Formatting
	Slide 4: Feedback on Week 2 - Raw String
	Slide 5: Progress Check
	Slide 6: Your tasks today
	Slide 7: That’s it for now. You can now proceed to the Lab 3 exercises.
	Slide 8: Appendix 1: Namespace
	Slide 9: Appendix 2: Non-Keyword Argument Functions
	Slide 10: Appendix 3: Keyword Argument Functions
	Slide 11: Appendix 4: enumerate() and range()

