IMPERIAL

BIOE50010 — Programming 2

Computer Lab 3: Modular Programming

Binghuan Li, Maria Portela, Gauthier Boeshertz, Samuel George-White,
Yilin Sun, Kamrul Hasan, Wenhao Ding, Siyu Mu, Lito Chatzidavari

20 October, 2025

© Imperial College London

Feedback on Week 2 - Paths

)

—[Relative path and absolute path]

» Using absolute path: starting from the root directory

f = open('C:/Users/lbing/Desktop/prog2/hey.txt"', 'w')

~"

full path starting from C: disk
= Using relative path: with respect to the current directory
f = open('x<Prog2/hey.txt', 'w')

the current directory (..\Desktop)

* In relative path:
= Asingle dot (.) refers to the current directory.

lbing
\

Desktop
file to open —

[hey.txt }-- prog2

»= Double dots (. .) refer to the parent directory (w.r.t. the current directory).

= Caveat! ./ (current directory) is different from / (root directory): the dot matters!

Feedback on Week 2 - Formatting

» £-string formatting starts with an f before the opening quotation mark.
» Each individual variable is enclosed within a pair curly brackets {}:

Code snippet from extract_dna2protein.py TTT Phe F Phenylalanine

data = [[‘T’, ‘T’, ‘T’, ‘Phe’, ‘F’, ‘Phenylalanine’],
[‘T’, 17, C’, ‘Phe’, ‘F’, ‘Phenylalanine’]]

print(f'{data[0@][0]}{data[@][1]}{data[@][2]}\t{data[@][3]}\t{data[@][4]}\t{dat
a[@][5]}")

= Alternatively, one can use the format method:

print (" {}{IH{\t{I\t{}\t{}".format(data[@][0], data[@][1], data[e][2],
data[@][3], data[@][4], data[@][5])

Feedback on Week 2 - Raw String

= By default, Python treats the backslash (\) as a special character: e.g., \t, \n

Example Console

myStr = 'Hi\nHello’ |:> >> Hi
print(myStr) Hello

* Python raw string (‘'r’) treats the backslash as a literal character.

Example Console

myStr = r'Hi\nHello' |:> >> Hi\nHello
print(myStr)

..which can be useful to deal with the path separator (in Windows):

f = open('C:\Users\lbing\Desktop\lab2\the road not taken.txt', 'r')

f = open(r'C:\Users\lbing\Desktop\lab2\the road not taken.txt', 'r')

@
©

Progress Check

Week 3: -
we are here

_[

Revision Points (from week 2)

N——

File 1/O: open, read, write, close.

Using loops to read lines recursively.

Print formatting with f-string

String methods: . count(), .strip(), .split()

List methods: .append()

- - -----= N
- \ k
Control Flow ‘Iwee .
|
Data Types |
|
Functions |3
p .
File Handling | 1
!)
Modules ,'
- — _ _ _ _ __ -
| oop | |23
[Testing] 1

| Algorithms

—

Your tasks today

= Four mini tasks on modular programming:
» Task 1: Calculate radius and angle from a pair of Cartesian coordinates

_ y « 1800

0 = (atan (x) /n) 180

» Task 2: Passing an unknown number of arguments into a function
» Task 3: The Collatz conjecture

» Task 4: Plotting marks on a user-defined board

To start...

* Read all information and the sample output provided in the lab carefully
= Consult the help pages for the string / list methods provided in Lab 2 slides

= Study the non-keyword and keyword arguments attached to the slides.

@ Questions?

That’s it for now.

You can now proceed to the Lab 3 exercises.

Appendix 1: Namespace

* A namespace holds a set of names that belongs to

a specific context (scope) within the program.

= |f you create a variable within a function, that
variable only exists in that function.

_ e.g., variables
~ within a function

namespace
~__e.g., variables at
the script top
global .
———————————— e.g., print
namespace CIIIIT T T "o g.p (),
= __name__
built-in
namespace

Example
X = 'globall’ same variable
name but hold
def print_x(): different values
x = "locall’
print(x)
def main():
print_x()
print(x)
if name_ == ' main_ ':
main()
Console

>> global!
Local!
8

Appendix 2: Non-Keyword Argument Functions

Suppose you are defining a function with arbitrary number of arguments...

* You can use non-keyword argument functions (*arg)

Example
def good fruits(*fruits): Console
for item in fruits: let us take a kiwi
print('let us take a', item) [:::::> let us take a watermelon

let us take a durian

good fruits('kiwi', 'watermelon', ‘'durian')

)

< Comments |

= The asterisk * is known as the unpacking operator. positional cargs
= All *args are collected and packed into a tuple (hence, use loops) arg;;ent J

= Positional arguments must come before *args: def call greeting(greeting, *names)

Appendix 3. Keyword Argument Functions

= Alternatively, you can use keyword argument functions (**kwarg)

Example
def good fruits(**fruits):
for fruit, attribute in fruits.items():
print(f"Let us take a {fruit}, which is {attribute}.")

good fruits(kiwi="green", watermelon="large", durian="spiky")

________________________ s
“keywords” Console
Let us take a kiwi, which is green.

Let us take a watermelon, which is large.
Let us take a durian, which is spiky.

- Comments |

= All *kwargs are collected and packed into a dictionary ({key}:{value})
» Positional arguments and *args must come before **kwargs.

10

Appendix 4: enumerate() and range()

These are two useful functions to iterate over sequences in loops.
* range(start=0, stop, step=1) -iterate through a sequence of numbers

* enumerate(iterable, start=0) -iterate through an iterable object (list, tuple,
dictionary) and keep track of the index.

Example
good friuts = ['kiwi', 'watermelon', ‘'durian']

using range()

for idx in range(9, len(good friuts)): E::::i> Console
print(f'{idx} {good friuts[idx]}"') 0 kiwi

. 1 watermelon

using enumerate()

for idx, fruit in enumerate(good friuts):
print(f'{idx} {fruit}')

2 durian

11

	Default Section
	Slide 1: BIOE50010 – Programming 2
	Slide 2: Feedback on Week 2 - Paths
	Slide 3: Feedback on Week 2 - Formatting
	Slide 4: Feedback on Week 2 - Raw String
	Slide 5: Progress Check
	Slide 6: Your tasks today
	Slide 7: That’s it for now. You can now proceed to the Lab 3 exercises.
	Slide 8: Appendix 1: Namespace
	Slide 9: Appendix 2: Non-Keyword Argument Functions
	Slide 10: Appendix 3: Keyword Argument Functions
	Slide 11: Appendix 4: enumerate() and range()

