IMPERIAL

BIOE50010 — Pr & gramming 2

Computer Lab 4: Object-Oriented Programming

Binghuan Li, Maria Portela, Gauthier Boeshertz, Samuel George-White,
Yilin Sun, Kamrul Hasan, Wenhao Ding, Siyu Mu, Lito Chatzidavari

26 October, 2025

© Imperial College London 1

Feedback on Week 3 - Formatting

» Suppose the desired effect from formatting is

= ... which can be achieved by 5 spaces
Example The key trick here is "{1i:<5}"
for 1 in range(-2, 1): = :< tells Python to left-align the text
print(f"{i:<5}", end="") _ _
for j in range(3): = 5 is the width of the space allocated
print(" . ", end='") for the text (5 characters wide inc.
print() the printed contents).

= Similarly, we can right-align the texts (:>) , centrally align the texts (:*), or
auto-fill the empty spaces (:char>).

* See in-class example here.

https://colab.research.google.com/drive/1k-a9OFTkPGpVwfnKWfzS9I_EThYbIDTJ?usp=sharing

Progress Check

Week 4-:
we are here -

_[

Revision Points (from weeks 3)]

Data structures: int, str, high-dimensional list

Functions, namespaces, using return, use
positional / keyword / non-keyword arguments

File 1/0: open, read, write, close
String / list methods

Other commonly-used Python built-in functions:
range(), enumerate(), len(), efc.

)

Python Basics

N——

Ve
.

Object & Class |

: Special Methods

Inheritance

Decorators

Testing

2

)

Algorithms

—

7/

\———————————

2-3

Object-Oriented Programming B rev terminology

* Two most commonly-used programming paradigms:

= Procedural (what you have done so far): programs are composed of one or more
functions, executed serially;

= Object-oriented: programs based on the objects, where data and functions are

‘packed’ into a user-defined data structure.
Z Cookie cutter

dy &y

Cookies

= Examples of objects: a str, 1ist, dict...

= These are the data structures, rather than the real data!

» The prototype / blueprint of an object is structured by the
class definition.

i A cookie cutter i i A class i
| can be used to :<:::>:' definition can be |

make different used to make
cookies. | several objects.

= Sometimes, objects are also referred to as the instances.

What Does an Object Hold? Bl e terminology!

P Suppose we have a box...
Il | a.k.a _ ‘I . _
"s , —> variables attributes | The colour is red attributes
s ' : a.k.a. : = The state is closed
‘V | —» functions methods
S / ... and | can do the following things
to manipulate the property / state of
@ the box: \

‘ : = Open the box
‘ An object pack§ = Describe its properties thod
.4 (encapsulates) variables ~ methods

= Close the box
= Fold it...

and functions

* See weekly coding example here. 6

https://colab.research.google.com/drive/1wa7U9vkMgyJ9FYDKebLxpsMXS72rMvK9?usp=sharing

Exam ple COde (1 l) self: an identifier refers to . new terminology!

the object itself, provides
access to attributes / methods

Example
class Box:
def _init_ (3K, color): Describe the
self.color = color < attributes properties / states
self.is open = False -— .
etc. of the object

def describe box(self): N
print(f"This is a {self.color} box.")

Manipulate the
behaviours the of
the object

def open box(self):
if not self.is open:
self.is open = True

spoJ;ew

print(f"The {self.color} box is now open.")
else:
print(f"The {self.color} box is already open.") J

* See weekly coding example here. 7

https://colab.research.google.com/drive/1wa7U9vkMgyJ9FYDKebLxpsMXS72rMvK9?usp=sharing

Example COde (2/) constructor: __init_ () is . new terminology!

triggered automatically when
the object is instantiated.

Example Driver

class Box: box = Box(color="blue")
def init (self, color):
self.color = color
self.is open = False
_C2 _box.open_box()

/

box.describe box()

def describe box(self): | #box.open_box()
print(f"This is a {self.color} box.") ! {}
I ,'

def open_box(self): P

I
if not self.is_open: # ! Console
. |
self.is_open = True [l This is a blue box.
print(f"The {self.color} box is now open.") Bl The blue box is now open.
else: / The blue box is already open.

print(f"The {self.color} box is already open.")

* See weekly coding example here. 8

https://colab.research.google.com/drive/1wa7U9vkMgyJ9FYDKebLxpsMXS72rMvK9?usp=sharing

Your task today

Create a class Point that handles operations on Cartesian coordinates (x, y)
* Display the coordinates

= Convert (x, y) to polar coordinates (r, 6)

* Implement operator overloading methods e.g. addition, subtraction,
multiplication...

To start...

= Take advantage of the code skeleton from the live coding demonstration (Friday lecture) and
example notebook.

» Read all information and the sample output provided in the lab sheet carefully.

» Read sec. 17.5-17.8 in ‘Think Python 2¢e’ for special methods and operator overloading.
e.qg., init , str_, add , radd _

Operator Overloading

» A same operator can have different behaviors when it is applied to different
data types. For example, with the '+’ operator;

int + int: arithmetic addition str + str: concatenation

3 1 + 2 ‘ab’ =—— ‘a’ + ‘b’

= Operator overloading enables users to define the rules of an operator
when it is applied to the user-defined data types. e.g., +, -, *, ==, <=

Point + Point: what will happen? " In this situation, the rule(s) for "+
2 need to de defined with the special
(4, 6) == (1, 2) + (3, 4) (magic) method __add__ in Point

10

	BIOE50010 – Pr🎃gramming 2
	Feedback on Week 3 - Formatting
	Progress Check
	Object-Oriented Programming
	What Does an Object Hold?
	Example Code (1/)
	Example Code (2/)
	Your task today
	Operator Overloading

