
26 October, 2025

BIOE50010 – Pr gramming 2
Computer Lab 4: Object-Oriented Programming

1© Imperial College London

Binghuan Li, Maria Portela, Gauthier Boeshertz, Samuel George-White,
Yilin Sun, Kamrul Hasan, Wenhao Ding, Siyu Mu, Lito Chatzidavari

Feedback on Week 3 - Formatting

2

Example
for i in range(-2, 1):
 print(f"{i:<5}", end='')
 for j in range(3):
 print(" . ", end='')
 print()

 Suppose the desired effect from formatting is

… which can be achieved by

The key trick here is "{i:<5}"
 :< tells Python to left-align the text
 5 is the width of the space allocated

for the text (5 characters wide inc.
the printed contents).

-2 . . .
-1 . . .
0 . . .

5 spaces

 Similarly, we can right-align the texts (:>) , centrally align the texts (:^), or
auto-fill the empty spaces (:char>).

* See in-class example here.

https://colab.research.google.com/drive/1k-a9OFTkPGpVwfnKWfzS9I_EThYbIDTJ?usp=sharing

Progress Check

3

Revision Points (from weeks 3)

 Data structures: int, str, high-dimensional list

 Functions, namespaces, using return, use
positional / keyword / non-keyword arguments

 File I/O: open, read, write, close

 String / list methods

 Other commonly-used Python built-in functions:
range(), enumerate(), len(), etc.

of
weeks

Week 4:
we are here

Python Basics

Testing

Algorithms

3

2-3

1

1

Object & Class

Inheritance

Decorators

Polymorphism

Special Methods

Object-Oriented Programming

5

 Two most commonly-used programming paradigms:
 Procedural (what you have done so far): programs are composed of one or more

functions, executed serially;
 Object-oriented: programs based on the objects, where data and functions are

‘packed’ into a user-defined data structure.

Source: Starting Out with Python, 4th Ed.

 Examples of objects: a str, list, dict…
 These are the data structures, rather than the real data!

 The prototype / blueprint of an object is structured by the
class definition.

A cookie cutter
can be used to
make different

cookies.

A class
definition can be

used to make
several objects.

new terminology!

 Sometimes, objects are also referred to as the instances.

What Does an Object Hold?

6

An object ‘packs’
(encapsulates) variables

and functions

variables

functions

attributes

methods

a.k.a.

a.k.a.

new terminology!

an object Suppose we have a box…
 The colour is red
 The state is closed

attributes

… and I can do the following things
to manipulate the property / state of
the box:
 Open the box
 Describe its properties
 Close the box
 Fold it…

methods

* See weekly coding example here.

https://colab.research.google.com/drive/1wa7U9vkMgyJ9FYDKebLxpsMXS72rMvK9?usp=sharing

Example Code (1/)

7

self: an identifier refers to
the object itself, provides
access to attributes / methods

Example
class Box:
 def __init__(self, color):
 self.color = color
 self.is_open = False

 def describe_box(self):
 print(f"This is a {self.color} box.")

 def open_box(self):
 if not self.is_open:
 self.is_open = True
 print(f"The {self.color} box is now open.")
 else:
 print(f"The {self.color} box is already open.")

m
ethods

attributes
Describe the

properties / states
etc. of the object

Manipulate the
behaviours the of

the object

new terminology!

* See weekly coding example here.

https://colab.research.google.com/drive/1wa7U9vkMgyJ9FYDKebLxpsMXS72rMvK9?usp=sharing

Example Code (2/)

8

Example
class Box:
 def __init__(self, color):
 self.color = color
 self.is_open = False

 def describe_box(self):
 print(f"This is a {self.color} box.")

 def open_box(self):
 if not self.is_open:
 self.is_open = True
 print(f"The {self.color} box is now open.")
 else:
 print(f"The {self.color} box is already open.")

Driver

box = Box(color="blue")

box.describe_box()

box.open_box()

box.open_box()

Console
This is a blue box.
The blue box is now open.
The blue box is already open.

constructor: __init__() is
triggered automatically when
the object is instantiated.

new terminology!

* See weekly coding example here.

https://colab.research.google.com/drive/1wa7U9vkMgyJ9FYDKebLxpsMXS72rMvK9?usp=sharing

Your task today

9

Create a class Point that handles operations on Cartesian coordinates (x, y)
 Display the coordinates
 Convert (x, y) to polar coordinates (r, θ)
 Implement operator overloading methods e.g. addition, subtraction,

multiplication…

To start…
 Take advantage of the code skeleton from the live coding demonstration (Friday lecture) and

example notebook.
 Read all information and the sample output provided in the lab sheet carefully.
 Read sec. 17.5-17.8 in ‘Think Python 2e’ for special methods and operator overloading.

e.g., __init__, __str__, __add__, __radd__

Operator Overloading

10

 A same operator can have different behaviors when it is applied to different
data types. For example, with the ‘+’ operator;

int + int: arithmetic addition

1 + 23 ‘a’ + ‘b’‘ab’

str + str: concatenation

 Operator overloading enables users to define the rules of an operator
when it is applied to the user-defined data types. e.g., +, -, *, ==, <=

Point + Point: what will happen?

(1, 2) + (3, 4)(4, 6)

 In this situation, the rule(s) for ‘+’
need to de defined with the special
(magic) method __add__ in Point

?

	BIOE50010 – Pr🎃gramming 2
	Feedback on Week 3 - Formatting
	Progress Check
	Object-Oriented Programming
	What Does an Object Hold?
	Example Code (1/)
	Example Code (2/)
	Your task today
	Operator Overloading

