
10 November, 2025

BIOE50010 – Programming 2

Computer Lab 6: Object-Oriented Programming

1© Imperial College London

Binghuan Li, Maria Portela, Gauthier Boeshertz, Samuel George-White,

Yilin Sun, Kamrul Hasan, Wenhao Ding, Siyu Mu, Lito Chatzidavari

Feedback on Week 5 – 2D Board Structure

2* See in-class example here.

Example: declare the 2-D nested structure

N_ROW = 3
N_COL = 4
board = []
for i in range(N_ROW):
 r = []
 for j in range(N_COL):
 r.append(' . ')
 board.append(r)

1. Create a row: Start with an empty list and

append the same element to it N_COL times.

(imagine this is a row vector with Ncol elements,

represents Ncol columns per row.)

2. Build the board: Append the initialized row to the

main board structure for N_ROW times. (so, you

obtain a Nrow × Ncol matrix.)

▪ Think of it as building layers: each row adds a layer to the board.

▪ However, this is not formatting. To print the rectangular board structure, you

need to use nested for loops to loop over each element in the board. (week 4 slides)

[[' . ', ' . ', ' . ', ' . '], [' . ', ' . ', ' . ', ' . '], [' . ', ' . ', ' . ', ' . ']]

https://colab.research.google.com/drive/1rnPUAlgRYh24X9gBTjud02nwL4k5cpSD?usp=sharing

Progress Check

3

of

weeks

Week 6:

we are here

Python Basics

Testing

Algorithms

3

2-3

1

1

Object & Class

Inheritance

Decorators

Polymorphism

Special Methods

Revision Points (from weeks 5)

▪ Concepts of “four pillars” in OOP: abstraction,

encapsulation, inheritance, polymorphism.

▪ Syntax/concepts of coding inheritance in

Python: super class, sub-class, super() function

▪ Inheritance can be in many forms: single,

multiple, multi-level.

deepcopy

4

▪ During variable assignment, the variable name does not hold the object itself.

▪ Instead, Python links the memory address of the object to the variable name.

[1, 2, 3, 4, 5, 6]list_a

0x7db1529e0f40

=

▪ Therefore, when assigning one variable to another (e.g., list_b = list_a)

does not create a new copy of the object.

▪ Both variables point to the same memory address.

▪ Any change in list_a will also reflect in list_b.

▪ To create a true copy of an object, one needs to use a deep copy (e.g., list_b

= copy.deepcopy(list_a)), so that everything within list_a is duplicated

recursively into list_b, each in its own independent memory space.

* See weekly coding example here.

https://colab.research.google.com/drive/17CJyJXuzjyPyc-u-f4AUJ0pIEzfdrZnA?usp=sharing

Handling Exceptions

5

▪ An exception is a fatal event that happens during the execution of a program.

▪ Exception: usually from the programme-level, e.g., bugs.

▪ Error: usually from the system-level, e.g., not enough memory.

▪ Programme may be able to catch and handle exceptions, but not errors.

▪ In Python, exceptions can be handled using the try…except… clause:

Example: use of try…except… clause

while True:
 try:
 x = int(input("Please enter a number (1-9): "))
 break
 except ValueError:

 print("That was not valid number. Try again...")

ValueError raises due to

the failure of typecasting,

e.g., int("hello!")

▪ A more advanced exception handling syntax is try…except…finally…

* See weekly coding example here.

https://colab.research.google.com/drive/17CJyJXuzjyPyc-u-f4AUJ0pIEzfdrZnA?usp=sharing

Your task today
Provide an object-oriented implementation for handling and manipulating DNA
sequences.

▪ Manipulating the DNA data: concatenation (__add__, __radd__), indexing
(__getitem__), counting nucleotides.

▪ File I/O: load and read the contents from an external .fna file.

6

To start…

▪ Recall the string/list methods and file I/O methods you have used; (lab 2 slides)

▪ Recall the class special methods and operator overloading you have used;

▪ Read all information and the sample output provided in the lab carefully;

▪ Try to integrate exception handling into your code: e.g., “open a file and read in the data;
if your attempt fails, return an empty data structure.”

That’s it for now.

You can now proceed to the Lab 6 exercises.

7

Questions?

Appendix 1: Summary of Common Exceptions

8

Exception Description

AttributeError Accessing an undefined attribute in a class.

ImportError Module import fails.

IndexError Accessing an out-of-range index in a list or tuple.

KeyError Accessing a non-existent dictionary key.

NameError Using a variable that hasn’t been defined.

TypeError Performing an operation on an inappropriate data type.

ValueError Passing a valid type but invalid value.

ZeroDivisionError Dividing by zero.

SyntaxError Code contains a syntax error.

RuntimeError Generic error for code execution issues.

Appendix 2a: “Is-a” or “Has-a”?

▪ Consider the following associations between two objects:

9

“Dog is a breed of mammal”

“The car has an engine.”

Compatible with inheritance

Not compatible with inheritance!

▪ In the second situation, the engine is a component of the car (composite).

▪ The “has-a” association is more appropriate for depicting cases in which

one object forms a component or part of another, rather than being a type

of that object.

▪ This relation is known as the composition.

new terminology!

Optional Topic

Appendix 2b: Composition

▪ Composition is a form of association where a class contains objects of

another class as part of its internal structure.

10

ToyTrain
- color: str
- size: str
- max_speed: float

+ __init__()
+ print_description()
+ accelerate()

Box

- is_open: bool
- item: ToyTrain

+ __init__()
+ open_the_box()
+ unpack_item()
+ control_the_train()
+ open_the_box()

▪ Box.item is an attribute

holding a ToyTrain object.

▪ Therefore, the following

expressions are functionally

equivalent:

ToyTrain.accelerate()

Box.item.accelerate()

▪ The following code example: A toy train (object 1) within a box (object 2).

* See weekly coding example here.

new terminology!

Optional Topic

https://colab.research.google.com/drive/17CJyJXuzjyPyc-u-f4AUJ0pIEzfdrZnA?usp=sharing

	Slide 1: BIOE50010 – Programming 2
	Slide 2: Feedback on Week 5 – 2D Board Structure
	Slide 3: Progress Check
	Slide 4: deepcopy
	Slide 5: Handling Exceptions
	Slide 6: Your task today
	Slide 7: That’s it for now. You can now proceed to the Lab 6 exercises.
	Slide 8: Appendix 1: Summary of Common Exceptions
	Slide 9: Appendix 2a: “Is-a” or “Has-a”?
	Slide 10: Appendix 2b: Composition
	Slide 11: Please log your attendance and provide us feedback!

