
23 November, 2025

BIOE50010 – Programming 2
Computer Lab 8: Advanced Function & Class Mechanics

1© Imperial College London

Binghuan Li, Maria Portela, Gauthier Boeshertz, Samuel George-White,
Yilin Sun, Kamrul Hasan, Wenhao Ding, Siyu Mu, Lito Chatzidavari

Feeback on Week 7 - find()

2

A C G T A G C G Tsequence
1 2 3 4 5 6 7 8 9

C G Tsegment …
? ? ?

 There are many possible ways to structure the find() algorithm:
 Character-to-character comparison: uses 2 nested for-loops, slow.
 List-to-list comparison: uses 1 for-loop to slice the sequence, faster.
 List-to-list comparison with an initial-character check: Avoids unnecessary slicing

by checking the first character first, fastest.

 String-to-string comparisons should work – strings are iterable.

Progress Check

3

of
weeks

Week 8:
we are here

Python Basics

Testing

Algorithms

3

2-3

1

1

Object & Class

Inheritance

Decorators

Polymorphism

Special Methods

Revision Points (from weeks 7)
 How to implement a simple algorithm, measure

your code efficiency, and perform optimization to
improve its efficiency.

Questions outside the classroom?

https://edstem.org/us/courses/87600/discussion

Function Decorators
 A decorator is a special type of function that is used to modify the behaviour of

another function.
 Wrapper functions
 Static method (in OOP)
 Class method (in OOP)
 Property method and setter method (in OOP)
 …

 When a function (or, method) is decorated, we place an @ symbol directly above
a function.

 It means: myFunction = myDecorator(myFunction)
 In this case, a function (myFunction) is passed into another function (myDecorator)

as an argument.

4

@myDecorator
def myFunction():
 ...

Wrapper Functions

5

Example from debug_timer.py
def debug_timer(some_function):

 def wrapper_function(*args, **kwargs):
 t0 = time.time()
 some_function(*args, **kwargs)
 dt = time.time() - t0
 print(f'Elapsed time: {dt} seconds’)

 return wrapper_function

@debug_timer
def original_function(data1, data2):
 print(f'running fcn with {data1} and {data2}')

original_function('happy', 1)

original_function is decorated with
@debug_timer. When debug_timer
invoked from original_function,
some_function = original_function

2

original_function is called with the
arguments 'happy', 1.

1

debug_timer calls wrapper_function
by revoking the return statement: so
now, the argument, some_function, will
be executed, as well as being timed.

3

1

2
3

 Rule 1: a function can be passed into another function as an argument.
 Rule 2: a function can be defined in another function.

* See weekly coding example here.

https://colab.research.google.com/drive/1gZ_qy2r0R5SO5JsrDGJUrEhQgc4RLgmU?usp=sharing

@staticmethod
 Sometimes we want a method (in OOP)

that does not use any instance data.
 i.e., no need access to self.

 Such methods are useful for:
 Utility functions.
 Operations that don’t use object state.

 There are two ways to define them:
 A regular function defined outside the

class.
 A @staticmethod defined inside the

class.

6

Example 1: using a standalone function
class Person:
 def __init__(self, age):
 self.age = age;
 self.adult = is_adult(age);

def is_adult(age):
 return age > 18;

Example 2: using a static method
class Person:
 def __init__(self, age):
 self.age = age;
 self.adult = self.is_adult(age);

 @staticmethod
 def is_adult(age):
 return age > 18;

Example: check if someone’s age > 18.
Using a regular function or a static
method works the same way functionally.

* See weekly coding example here.

https://colab.research.google.com/drive/1gZ_qy2r0R5SO5JsrDGJUrEhQgc4RLgmU?usp=sharing

Example
from datetime import date

class Person:
 def __init__(self, age = 0):
 self.age = age

 @classmethod
 def fromBirthYear(cls, year):
 return cls(date.today().year - year)

@classmethod

7

 In OOP, we are allowed to instantiate a
new object in two ways:

1. Directly calling the class constructor.
2. Using a class method (@classmethod)

method as an alternative constructor.

Driver code
p1 = Person(20)
print(p1.age)

p2 = Person.fromBirthYear(2005)
print(p2.age)

The same
effects!

Example: calculating someone’s age
from his/her birth year:
 Call the class method using the birth year
 The method calculates the age
 The calculated age is passed to the constructor
 The constructor assigns the value to self.age

* See weekly coding example here.

https://colab.research.google.com/drive/1gZ_qy2r0R5SO5JsrDGJUrEhQgc4RLgmU?usp=sharing

Your Tasks Today
Four short tasks combining use of procedural programming and object-
oriented programming:
 Computer animation in Command Prompt (Windows PCs) / Terminal (Mac).

 Use wrapper functions to time your code.

 Decorators in classes: static method, class method, and property function.

8

To start…
 Study the syntax using the Python snippets from your Friday lecture slides and weekly

example notebook.
 Read the sample output from the lab sheet carefully.
 Revise the Command Prompt / Terminal commands listed in the Lab 2 sheet and slides.

	BIOE50010 – Programming 2
	Feeback on Week 7 - find()
	Progress Check
	Function Decorators
	Wrapper Functions
	@staticmethod
	@classmethod
	Your Tasks Today

