
1 December, 2025

BIOE50010 – Programming 2

Computer Lab 9: Unit Tests

1© Imperial College London

Binghuan Li, Maria Portela, Gauthier Boeshertz, Samuel George-White,

Yilin Sun, Kamrul Hasan, Wenhao Ding, Siyu Mu, Lito Chatzidavari

Progress Check

2

of

weeks

Week 9:

we are here

Python Basics

Testing

Algorithms

3

2-3

1

1

Object & Class

Inheritance

Decorators

Polymorphism

Special Methods

Revision Points (from weeks 8)

▪ How to use wrapper functions and decorators.

Understand the flow of execution.

▪ How to use a class method in class. Clearly

differentiate between class attributes and instance

attributes.

▪ How to use a static method and a property

decorator in class.

▪ The assignment will be released on Friday 5th

December, 2025.

▪ There will be no additional tasks for week 10. Labs

will be running in a Q&A mode.

Workflow with Unit Test

3

provides setup & teardown for

cases/suites, e.g., set/reset timer

executes everything and

reports results

Test Fixature

Test Case Test Suite

Test Runner

OR

a collection of test

cases

single input →

output check

(“assertion”)

▪ unittest allows users to customise the tests: either test a single case (test

case), or test a collection of cases (test suite).

Unit Test

To define the test cases using unittest

▪ Each test case should be defined as a method, with its name starting with the
keyword ‘test’.

▪ A series of assertion methods have been defined in unittest.TestCase
class – hence you need to use inheritance to access to these methods.

4

Example from test_point_pp.py

import unittest
import point_pp as point

class TestPointPP(unittest.TestCase):

 def test_add(self):
 result = point.add([10, 2],[1, 7])
 self.assertEqual(result, [11, 9])

Driver (test runner)

if __name__ == "__main__":
 unittest.main()

▪ You can define multiple test cases
within one test class.

▪ All test cases will run automatically
unittest.main()

A Coursework Grader (1/)

5

Test Fixature

Test Cases

A Coursework Grader (2/)

6

Test Suite

Test Runner

Your Task Today

Generate the test examples, and create test cases using module unittest,

perform tests to two functions eval_win() and board_full() in the Tic Tac

Toe game.

7

To start…

▪ Read and study the example Python scripts from your Friday lecture.

▪ The functions to be tested are given out in TicTacToe.py on Blackboard. To
start, import them to your script.

▪ Refer the summaries of the unit test methods (given out the subsequent pages),
when necessary.

Appendix 1: Unit Test Methods

8

▪ Test fixature methods

Method Description

setUp()
The method is called automatically before running each test method in a

test case class.

tearDown()
The method is called automatically after running each test method in a

test case class.

setUpClass()
The method is called automatically before running the tests in a test

case class.

tearDownClass()
The method is called automatically after running the tests in a test case

class.

setUpClass() setUp()

tearDown()

tearDownClass()assert...

setUp()

tearDown()

assert... …

Appendix 1: Unit Test Methods

unittest method Checks that… unittest method Checks that…

assertEqual(a,b) a == b assertIsNone(x) x is None

assertNotEqual(a,b) a != b assertIsNotNone(x) x is not None

assertTrue(x) bool(x) is True assertIn(a, b) a in b

assertFalse(x) bool(x) is False assertNotIn(a,b) a not in b

assertIs(a,b) a is b assertIsInstance(a,b) isinstance(a, b)

assertIs(a,b) a is b assertNotIsInstance(a,b) not isinstance(a, b)

assertIsNot(a,b) a is not b

9

▪ Test assertion methods

	Slide 1: BIOE50010 – Programming 2
	Slide 2: Progress Check
	Slide 3: Workflow with Unit Test
	Slide 4: Unit Test
	Slide 5: A Coursework Grader (1/)
	Slide 6: A Coursework Grader (2/)
	Slide 7: Your Task Today
	Slide 8: Appendix 1: Unit Test Methods
	Slide 9: Appendix 1: Unit Test Methods
	Slide 10: That’s it for now. You can now proceed to the Lab 9 exercises.
	Slide 11: Please log your attendance and provide us feedback!

