
5 January, 2026

BIOE50010 – Programming 2
Revision and Q&A

1© Imperial College London

Binghuan Li | binghuan.li19@imperial.ac.uk

mailto:binghuan.li19@imperial.ac.uk

Exam

2

3

 Do not just look at code and say “oh,
that makes sense”.

 Do write the code from a blank page.
 The syntax of every line of code must

make sense to you.
 The algorithm that’s being

implemented needs to make sense to
you.

 Use questions from labs/exams to test
yourself with limited/no access to the
solution/internet/LLM.

Tips for Revision

Programming 2

4

Functions

File Handling

Data Types

Control Flow

Modules

Object & Class

Inheritance

Decorators

Polymorphism

Special Methods

Testing

Algorithms

AI, ML, DL

Focus:
• Grasp Python syntax and logic.
• Use data types, control flow, and functions.
• Apply file handling and modules.

Focus:
• Design data structures using classes.
• Apply inheritance and polymorphism.
• Enhance designs with decorators and special methods.

Focus:
• Implement and test algorithms.
• Evaluate code performance and reliability.
• Recognize the role of AL/ML in research.

Control Flow

5

if i == 1:

if board.update_row_col():

while game:

Evaluate i==1, outcome is True or False

A function that returns True or False

A Boolean variable: True or False

 if and while must be followed by an expression whose value can be evaluated
as a Boolean (True or False).

 for must be followed by an iterable object (e.g., string, list, tuple, dictionary).

for i in range(10, 0, -1):

for idx, val in enumerate([2, 5, 8]):

for key, value in my_dict.items():

Decrement of an index using range()

Loop over a list with index and value

Loop over a dict with key:value pairs

See:
Lab 1, Lab 3 (Task 3), Lab 5

 break (stop looping), continue (skip this round)

Functions

6

Input(s) Function Output(s)
 Optional in function definition
 Pass variables into a function
 Pass functions into a function (wrapper)

 Function argument types:
1) Positional argument
2) Non-keyword argument (*arg)
3) Keyword argument (**kwarg)

 Optional in function definition
 Use return to output

 When multiple return defined, the
function terminates once the first
return is triggered.

 Catch/omit the returned result in
function call.

See:
Lab 1, Lab 3 (Task 1,2), Lab 8 (Task 2)

 Namespace matters!

 Local variables: if you create a variable within a
function, that variable only exists in that function.

Declare and Print a 2D List

7

Example: declare the 2-D nested list structure
N_ROW = 3
N_COL = 4
board = []
for i in range(N_ROW):
 r = []
 for j in range(N_COL):
 r.append(' . ')
 board.append(r)

1. Create a row: Start with an empty list and
append the same element to it N_COL times.
(imagine this is a row vector with Ncol elements,
represents Ncol columns per row.)

2. Build the board: Append the initialized row to the
main board structure for N_ROW times. (so, you
obtain a Nrow × Ncol matrix.)

[[' . ', ' . ', ' . ', ' . '], [' . ', ' . ', ' . ', ' . '], [' . ', ' . ', ' . ', ' . ']]

Example: print the 2-D nested list structure

for i in range(N_ROW):
 print(f"{i:<5}", end='')
 for j in range(N_COL):
 print(board[i][j], end='')
 print()

The key trick here is "{i:<5}"
 :< tells Python to left-align the text
 5 is the width of the space allocated for the

text.
end='' prevents line breaks introduced by print()

See:
Lab 3 (Task 3), Lab 5, Lab 8 (Task 1)

File I/O
 After reading data from a file, the contents are saved in a

structure such as a string or a list.

 It is your task to process the raw readings before using
them for further analysis: clean, transform, sort,
organise…

 These operations can be done with string and list
methods, e.g.,
 Use .split() or .strip() to process text strings.

 Use .append() or .sort() to manage lists.

8

Open a file in Python

Close the file

Read from the file, and
process your readings

• How to use a loop to read files line by line.
• If you are tasked to read a file (e.g., .txt, .csv, .fasta, .fna), always scrutinize the file

contents first in a text file editor (NOT Microsoft Excel).

See:
Lab 2 (Tasks 2.2, 3, 5), Lab 6

Error Catching

9

Example: use of try…except… clause
while True:
 try:
 x = int(input("Please enter a number (1-9): "))
 break
 except ValueError:
 print("That was not valid number. Try again...")

ValueError raises due to
the failure of typecasting,
e.g., int("hello!")

 In Python, exceptions can be handled using the try…except… clause:

 Understand common errors types, e.g.,
IndexError Accessing an out-of-range index in a list or tuple.

NameError Using a variable that hasn’t been defined.

TypeError Performing an operation on an inappropriate data type.

ValueError Passing a valid type but invalid value.

SyntaxError Code contains a syntax error.

See:
Lab 6

Object-Oriented Programming
 Object-oriented: programs based on the objects, where data (attributes) and

functions (methods) are encapsulated into a user-defined data type.
 Class: The blueprint for creating an object. Does not contain actual data.
 Objects (instances): when actual data are sent into the class (instantiation).

10

class Box:
 def __init__(self, color):
 self.color = color
 self.is_open = False

 def describe_box(self):
 print(f"This is a {self.color} box.")

__init__() is automatically
triggered when the object is
instantiated.

self: the first argument for
almost all methods, providing
access to attributes / methods.

attributes

A regular
method

See:
Lab 4, Lab 5, Lab 6

OOP: Special Methods

11

 Operator overloading enables users to define the rules of an operator when it is
applied to the user-defined data types. e.g., +, -, *, ==, <=

Point + Point: what will happen?

(1, 2) + (3, 4)(4, 6)

 In this situation, the rule(s) for ‘+’
need to de defined with the special
(magic) method __add__ in Point

?

See:
Lab 4, Lab 6

 pt + 2 triggers __add__(), 2 + pt triggers __radd__().

 Other magic methods we have seen:

__init__, __str__, __getitem__, __mul__, __rmul__, __sub__, __rsub__.

 Functions associated with classes:

isinstance(), hasattr(), getattr()

OOP: Inheritance

12

Mammals

Dogs

super
class

sub-
class

class Mammal:
 def __init__(self, name):
 self.name = name

 def warm_blooded(self):
 return f"{self.name} is warm-blooded."

 def speak(self):
 return "Grrrr!"

class Dog(Mammal):
 def __init__(self, name):

super().__init__(name)

 def speak(self):
 return "Bark!"

speak() method in Dog
overrides the speak()

method in Mammal

warm_blooded()
method in Dog is

inherited from the
Mammal class

 OOP allows a child class to inherit features from the parent class(es)

See:
Lab 5

Tips for Exam

13

1. You MUST use Python IDLE 3.13.5 to answer questions.
 Make sure you are familiar with Python IDLE interface before exam.

2. You will be supplied with a code skeleton to start your work.
 If you download a file, where is it? Is it named correctly (e.g., q1.py, q2input.txt)?
 Do NOT declare anything else in the global space.
 If you want to test, you MUST use the main guard: if __name__ == "__main__"

3. You MUST submit your work before the exam finishes; You will NOT be given
extra time for code submission.
 Allocate your time wisely. Save your work frequently.
 Submit as instructed strictly – submitted filenames MUST adhere to the instructions.

4. Non-technical PC login failures will NOT be forgiven.
 Memorise your college login credentials (username, password). Test it beforehand!

The End.

14

	BIOE50010 – Programming 2
	Exam
	Tips for Revision
	Programming 2
	Control Flow
	Functions
	Declare and Print a 2D List
	File I/O
	Error Catching
	Object-Oriented Programming
	OOP: Special Methods
	OOP: Inheritance
	Tips for Exam
	The End.

