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1 Overview

1.1 Motivation: Why Numerical Solutions?

When solving a physical problem governed by a set of differential equations, it is not always
possible to simplify the equations to obtain an analytical solution. For example, the following
scenarios may impede us from applying the assumptions to sufficiently simplify the governing
equation for obtaining an explicit expression of the solution:

» Non-linear governing equations e.g., 3D Navier-Stokes;
» Complex boundary conditions, e.g., spatially and temporally varying boundary conditions.

* Irregular geometry domains, e.g., blood flow in a bifurcated, curved vessel;

In such cases, it is often the best approach to solve the problem using computer simulations
to obtain the solution numerically, i.e., finding the solution subjected to the governing equation
and boundary conditions at a discrete set of points (or, elements) in space and/or time, rather
than using an analytical expression.

An alternative interpretation of the numerical solution is closely linked to the concept of a ‘field’,
for example:

« In fluid dynamics, we are interested in the velocity field and the pressure field.
* In heat transfer, the temperature field is sought.

* In electromagnetics, the electric and magnetic fields must be resolved.

The numerical solution provides the entire field that describes the physical system directly, while
an analytical solution yields a mathematical expression for the solution variables (yes, you can
construct the field from the expression).

1.2 Overview of the Computer Simulation Procedure

In this course, we are interested in using computer simulations to solve fluid problems, and this
technique is more widely known as computational fluid dynamics (CFD). Invented in the 1960s
and thriving since the 1970s, CFD has been successfully applied in numerous areas of fluid
mechanics. For example, CFD is consistently playing a crucial role in the study of the aerody-
namics of cars and aircraft, or in the design of the turbomachinery device involving pumps. For
us bioengineers, CFD offers valuable insights into the complex biological flows that are con-
ventionally difficult to analyse ex-vivo: examples are blood circulation in vessels, airflow in the
lungs, or complex transport phenomena such as drug delivery.

How does CFD work in action? Figure 1.1(a) presents a simplified CFD workflow, accompanied
by an example of the technique applied to flow modelling in a straight pipe with a local stenosis
(narrowing) in Figure 1.1(b).

1. The geometry is discretised into a mesh (mesh generation): this process involves iden-
tifying the fluid domain in the geometry, followed by dividing this continuous domain into
a finite number of small regions using elements.
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2. Prescribing boundary conditions on all boundaries of the fluid domain (e.g., inlet, outlet,
wall).

3. Specifying fluid properties including fluid density and viscosity.

4. Solving the governing equations using the numerical solver, and the resulting fluid flow
characteristics (velocity and pressure) fields are obtained.

Geometry

Boundary conditions Mesh Fluid properties

\ /

Solve continuum mechanics

Fluid flow characteristics

(a) Generic workflow for setting up and solving a CFD simulation, from geometry and mesh generation
to solving continuum mechanics and obtaining fluid flow characteristics.

Fluid domain
(a) Geometry

Discretization
(b1) Mesh Generation

AVAvAYA P TAVAVATLY O x ! § I rna gl‘"ar
R A A A S AR AN AR AT A AVA A AT VAV AVAVAVA VAV v i
Vavs AR PR, ARSI N Ko X 4 H
%Em%%&%%}%{#‘#" ST AYAVAYATAYAYATAVAVAYA i s R R DRI K 7 elements

SYAVAVAYVATAVury VAYAViVTiY

BCs & Fluid Properties
(b2) Simulation Setup BC wall: v=0

BC inlet: /‘ Phlood> Hblood ’\ BC outlet:
p=0

Vparabolic(t)

Solving Navier-Stokes
(c) Post-Processing l— max v

[minv

(b) Example of the CFD workflow for simulating blood flow in a 2-D pipe with a local stenosis.

Figure 1.1: Workflow of a computational fluid dynamics simulation.

Steps 1-3 listed above are commonly known as the CFD pre-processing, as these steps must
be accomplished before the solution procedure and fed as the input to the CFD solver. Upon
the completion of the solution procedure, the results can be post-processed — where users can
generate visualisations (e.g., plot vector arrows, colour maps), or quantifying desired haemo-
dynamic metrics (e.g., wall shear stress).




With the advancements in software engineering and ever-increasing computational power (as
successfully predicted by Moore’s Law), the CFD capability has been well encapsulated by
many commercial software packages (e.g., ANSYS Fluent, Siemens Star-CCM+, COMSOL
Multiphysics). With the graphics user interface, the human efforts required in the rapid de-
sign, simulation, and optimisation have been significantly reduced. Furthermore, CFD software
packages are equipped with the multiprocessing capability — this means that accelerating the
solution procedure using CPU/GPU is possible, which makes the computation more efficient.

In this course, we will introduce the CFD capability in COMSOL Multiphysics to solve fluid me-
chanics problems.

1.3 Scope of the Notes

CFD should not be used as a black box! At this point, it is worth pointing out that the ease
of use of modern CFD tools does not eliminate the need for a strong physical and mathematical
understanding. A simulation is only as reliable as:

* the correctness of the geometry and mesh,
* the appropriateness of the chosen physical models and numerical schemes,
« the accuracy of boundary and initial conditions, and

« the rigour of post-processing and validation against experimental or theoretical results.

Failure to meet such requirements may lead to physically meaningless results (in such cases,
CFD is referred to as “coloured funny diagram”), or divergence of the simulation.

Therefore, in the notes following, we will go on a rapid tour of three classical numerical methods:
finite difference (FD), finite element (FE), and finite volume (FV), which are the mainstream
methods used to solve fluid problems in the real world. The aim of these notes is

1. to introduce the fundamental numerical ideas behind CFD,

2. to build intuition about how these methods work, and,

3. to understand the pros and cons associated with these methods.
Closing Remarks The study of numerical methods is a huge topic in its own right, and it is
the subject of much current research that is way beyond these notes, and beyond physiological

fluid mechanics. There exist rich learning resources for the theoretical foundations of CFD, and
many of the topics in these notes are covered in the following textbooks:

* F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics: An Ad-
vanced Introduction with OpenFOAM® and Matlab.

« J. H. Ferziger et al., Computational Methods for Fluid Dynamics.

The Department of Mechanical Engineering at Imperial College London offers two CFD-related
modules to the MEng students at the Department of Bioengineering, these are:
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« MECH60021/70028 — Computational Continuum Mechanics;

* MECH70015 — Computational Fluid Dynamics.

These courses build on our existing knowledge of fluid (and solid) mechanics, deepening the
current understanding of the theoretical foundations of computational mechanics while main-
taining a strong focus on practical applications.



2 Description of Common Numerical Methods

2.1 Problem Statement - Poisson Equation

To demonstrate the basic ideas of numerical methods, we consider a simplified 1-D, boundary
value fluid mechanics problem where steady, viscous-dominated incompressible flow is defined
on a finite domain Q spanning the length L, i.e., Q = [0, L]. With these assumptions, the Navier-
Stokes equations can be reduced to 1-D model:

d®u  1dp
@ = l—la, x € Q.
where u(x) is the velocity field to be solved. The problem is subject to the no-slip boundary
conditions at the walls:

u(0)=0, u(L)=0.

For a constant pressure gradient, we define the R.H.S. f = ﬁf, hence,
d?u
@ = f, X €Q, (21)

which is the 1D Poisson equation for the velocity field.

2.2 Solution with Finite Difference Method

The finite difference method was first applied by Isaac Newton in 1687, and it is probably the
simplest numerical method for people to perceive how to solve PDEs. In 1-D space, the do-
main is represented as a finite set of points. Derivatives of the functions are approximated by
using a Taylor series expansion, truncated to a desired level of accuracy. We end up with a
single equation at each point in the domain, and solving all of these simultaneously (a system
of equations) gives the solution to the problem.

Recall the Taylor series expansion for a 1-D differentiable function u(x) up to n"-order in the
vicinity of x = x;:

u(x) = NE ldnu(x—x-)"
o n! dx"
~ du (x—xi)2 d2u ()c—)ci)3 d3u (x —x)N (dNu
-”f+<x—xl'>(a)i+T(@ A T P A e pre ) R

where u; denotes the value of u at x = x;.

We can simply replace x by x;,1, where x;,1 denotes the adjacent node next to x;. Therefore,
the first-order derivative evaluated at x = x; is

d i+l — i2 d2 4l — i3 d3
_I/l) +()C+1—X)( M) +M( I/l) + ...,

Wip1 = Ui + (Xj41 — Xi)(

dx /. 2! dx2 3! dx3
du Uiy — Ui Xip1 —x; (d2u (i1 — x)% (dBu
— | = - _ - | — 2.3
- (dx)i Xisl — X; 2! (de)l. 3! o). ” (23)



With higher order terms being truncated, the only term left (blue-coded) is known as the forward
differencing approximation of the first-order derivative.

Similarly, if we replace x by x;_1, where x;_; denotes the previous grid next to x;. Therefore, the
first-order derivative evaluated at x = x; is

du _ u; —uj—1 X; — Xi—-1 d21/£ (xi —xi_1)2 d3u
&), o2),” T 3\t

Xi —Xj-1 2!

(2.4)

dx ),

With higher order terms being truncated, the only term left (blue-coded) is known as the back-
ward differencing approximation of the first-order derivative.

If we add Equation 2.3 to Equation 2.4:

du Wil —U;  Xig1 —Xi [ d2u wi —uj—1  xi—xi—1 (d%u
21— = - ' + ...+ - — | +...
i i i

dx /. Xitl — X§ 2! @ X; —Xj-1 2! dx2 :
= (d—u) _ Misl — i1 (xia1 = x1)” ~ (xiw;(dgy+/
dx ), xin —Xio1 2 — Xi-1) dx® /;
- (d_u) _ Miel —Uioy Ui~ Uic1 (2.5)
dx/,  Xiy1 —xi1 2Ax

Equation 2.5 is known as the central differencing approximation of the first-order derivative at

X =Xj.

Comments

In the derivations above, we truncated the higher-order terms in the Taylor series expan-
sion. These terms diminish rapidly because they are multiplied by higher powers of Ax.

For the forward and backward differencing schemes, the first neglected term involves
the second derivative, giving them a first-order accuracy. In contrast, for the central
differencing approximation, the even-order terms cancel out, and the leading neglected
term involves the third derivative. Therefore, the central differencing scheme achieves a
second-order accuracy.

The central differencing approximation of the second derivative at x;;1; and x;_1 is based on the
evaluation of du/dx halfway between x; and x;,1, and x; and x;_1

du Uikl — U du Wi — Ui
~ Py e ~ )
dx il Xirl =X de/,_1  xi—xi1

resulting in an expression of the second derivative as

D=

(&), (&)
(d?_u ) A i A d i (= xe1) i (i = %0) = (i — Xim1)
dx?/; %(Xi+1 = Xi-1) %(xiﬂ = xi-1) (Xix1 = x;) (X; = Xi-1) .
For a constant grid space Ax, the expression above can be simplified to

(d2u) - Uit — 2U; + Ui
i

T A (2.6)




Figure 2.1: Discretisation of the 1D domain for the finite difference formulation.

This discretisation scheme is shown in Figure 2.1.

Therefore, the finite difference formulation of the 1D Poisson Equation becomes

Uil — 2u; + Ui
Ax?

= f, i=1,...,N. 2.7)

Note that the R.H.S. term f has also been discretised into elements, denoted by f;. Arranging
Equation 2.7 yields a linear system of equations

-2 1 0 0 0 0 0] ur | [ ]
1 -2 1 0 0 0 0 0 Us fa
1 -2 1 0 0 0 0 us f3
o o 1 -2 1 0 0 O Uy fa
: - : = Ax2
0O 0 O 1 -2 1 0 O0]funvs fn-3
0O 0 O 0 1 -2 1 0]|un-2 fn-2
0O 0 O 0 0 1 =2 1/[||uy-1 -1
0 0 0 0 0 1 —2_ L un ] | fN ]
—_— —
A u b

or, in compact matrix notation: Au = b, where A is an N x N tridiagonal coefficient matrix, b is a
N x 1 vector corresponding to the R.H.S. constant terms, and u is a vector of unknowns, whose
dimension is the same as that of b.

Finally, to obtain the solution field u, the solution can be formally written as:
u=A"'b. (2.8)

In practice, the matrix A is not inverted explicitly; instead, direct or iterative solvers are used.

Comments

» The advantage of FDM is the simplicity. We have seen that the FD approximation
of derivatives can be easily derived from the Taylor series; Further, by truncating the
expansion terms, we can control the accuracy. The resultant system of equations
can be easily coded and solved.

* The disadvantage of FDM is the difficulty of implementing for irregular geometries.
Further, for the boundary layer problems, a very fine mesh is required at the bound-
ary — hence, the space between grids may be unequal (i.e., Ax;_1 # Ax; # Axii1),
assembling A would be cumbersome.




2.3 Solution with Finite Element Method

The finite element method (FEM) is a general numerical method for PDES; more than its capabil-
ity for solving fluid problems, it has its wide applications in structural analysis, electromagnetism
simulations, etc. To start with FEM, we shall first introduce a few new concepts.

Equation 2.1 is currently presented in the differential form over its domain Q, which means that
the equation must be satisfied pointwise for all x € Q. In other words, the solution u(x) must be
continuous, so that the second derivative % exists everywhere in Q (twice differentiable). We
say that the equation is written in its strong form.

The first step in FEM is to relax the requirement of the strong form. Instead of demanding that
the solution « be continuously differentiable up to second order, if we multiply the governing
eqguation by a test function, v(x), and subsequently integrate w.r.t. x, yielding

/OL(ji_g‘) dx:/OLfv dx. (2.9)

Comments

The test function v is chosen in a fashion that the boundary conditions are unconditionally
satisfied: v = 0 at both x = 0 and x = L. We shall see why this is important very soon.

Applying integration by parts to the L.H.S. of 2.9, we can reduce the highest order of derivatives
in the weak form:

- ——dx= dx 2.10

Recall the boundary conditions of the test function (v = 0 at x = 0 and x = L), hence, the first
term vanishes, and we obtain

[du ]L L du dv L

——dx = dx. 2.11
A il L (2.1)
Equation 2.11 is known as the weak form of the governing equation: “weak” means « and its
first derivative are square-integrable. For the rest of the solution procedure, we shall work with
the weak form of this governing equation.

We now introduce shape functions. In the 1D domain, each element is made of two nodes;
we can index them with a and b. If we know the solution « on node a is U,, and the solution
on node b is U, what is the solution field between a and b? Here is where the shape functions
come in — they are used to interpolate the solution field u between nodal values within each
element:
U= UgNa(x) + UpNp(x) = Y NiUi, (2.12)
ie{a,b}



Comments

Shape functions are defined on each node of a single element, i.e., N,(x) on node a, Np(x)
on node b. The following rules must be satisfied:

« Each shape function takes the value 1 at its own node and 0 at the other nodes:
Na(xa) = 1,Na(xb) =0and Nb(xb) = 1,Nb(xa) =0

» Within each element, the shape functions sum to 1: N,(x) + Np(x) = 1.

Figure 2.2 illustrates the linear shape functions defined on the 1D element with two nodes.
The linear shape functions can be derived with the analytical expression:

—X +Xp
Na)= T Np() = =
a a

X —Xq

Ny(x)
1 -

1
0 ®
xa
|

Xp

Y
one element

Figure 2.2: Linear shape functions defined for 1D bar elements.

Similarly, for the test function v:

v = VyNg(x) + VpNp (x) = Z N,V;. (2.13)
jeta.b}

Therefore, The L.H.S. of Equation 2.11 can be written as
/ du v _/L Z%U'
0 Ox Ox 0 - ox !
L
= U;V; ——dx 2.14
Z Z J /0 ox Ox ( )

and the R.H.S. of Equation 2.11 is

/O (x)(ZVN(x) Zv / F(X)N;i (x) dr. (2.15)

Equating both sides:

ZZU,-V,-/OL%% d.szV,-/OLf(x)Ni(x) dx . (2.16)
i i

K F
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where K = /OL Ni(x) N;. (x) dx is known as the stiffness matrix, and F = fOL f(x) N;(x) dx is the
source.

Since the coefficients V; are arbitrary, for any value of V; (test direction), the following relation
must hold:

> KijUj=F, (2.17)
J
In compact form,
KU=F. (2.18)

Hence, the unknown solution vector can be easily solved by solving this linear system of equa-
tions.

Comments

* The advantage of FEM is its adaptability for solving equations in irregular geome-
tries. Furthermore, FEM is a generic method with many applications in not only
solving fluid or transport equations but also well-established for structural analysis,
electromagnetics analysis etc.

* The disadvantage of FEM is that creating a suitable mesh requires more effort than
FDM. Thus, in practice, the FE mesh generation is usually accomplished by profes-
sional pre-processing software packages (e.g., gmsh, Altair Hypermesh). It is also
rare to write a finite element code by hand.
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2.4 Solution with Finite Volume Method

Although FEM is powerful for general PDEs and complex geometries, the finite volume method
(FVM) is preferred in CFD because it guarantees strict local conservation of quantities such
as mass, momentum, and energy. Unlike FEM, in FVM, the computational domain is divided
into small regions called control volumes (CV). Each control volume is associated with a corre-
sponding control surface (CS), which represents its closed boundary.

Figure 2.3: Applying the finite volume method to a simplified mesh network. The total flux
within a control volume (CV) is balanced by the fluxes entering and leaving the CV through its
control surfaces (CS): Qtotal = Qin — Qout,1 — Qout,2-

The key idea of FVM is to enforce the governing transport equations in an integral form over
each control volume. Any volume integrals that contain divergence operators are converted into
surface integrals over the boundary of the control volume using the divergence theorem: the
net flux of a quantity through the surface of a control volume equals the integral of the source

terms inside it. // #
(V-u)dV = (u-n)ds, (2.19)
CcV CS

where n is the outward unit normal on the surface.

Partition Q into control volumes around each node. Integrate over a control volume CV:

/ V2udv = / fav. (2.20)
CvV

(%

Apply the divergence theorem to the L.H.S.

/V2udV=/Vu~ndS, (2.21)

Ccv CSs

Therefore, Equation 2.20 can be expressed as

/Vu-ndSz/de. (2.22)
CV

CSs

Approximate fluxes across faces using gradients or neighbouring values. For the uniform 1-D
mesh, Equation 2.22 reduces to a finite difference formulation:

Ui—1 — 2u; + Uiy
Ax?

= f. (2.23)
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Comments

* The advantage of FVM is that it seamlessly embeds the physical conservation laws
into the numerical scheme; further, it also has the capability to adapt irregular ge-
ometries that FDM cannot handle.

» The disadvantage of FVM is that it is hard to scale up to achieve a higher-order
numerical accuracy.
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2.5 Other methods

There are many other numerical methods for solving differential equations. We shall now go
through a quick tour of some of the selected methods.

Spectral Method Instead of approximating derivatives using local differences (FD) or shape
functions (FE), the spectral method represents the solution as a linear combination of basis

functions, i.e.,
N

u(x) = ) i (x),
k=0
where i, are coefficients multiplied to the basis functions ¢, (x). The basis functions can be
chosen as smooth waves (e.g., sine and cosine = Fourier series) or polynomials (e.g., Cheby-
shev polynomials).

Taking derivatives of basis functions becomes fairly straightforward, since the basis functions
are known analytically. For example, with the Fourier basis ¢y (x) = ¢’**, d¢/dx = ike’**, so the
derivative of u(x) is just multiplying coefficients i, by ik.

Reduced Order Modelling (ROM) ROM refers to a class of techniques that aim to reduce
the computational cost of solving high-dimensional problems, such as CFD simulations, while
retaining the essential dynamics of the system. The idea is to approximate the solution in a
much smaller subspace spanned by a set of basis functions (modes), often obtained from data
of high-fidelity simulations (snapshots) using proper orthogonal decomposition (mathematically
analogous to the singular value decomposition).

Full order model Mode 1 Mode 2 Mode 3

0.3079 0.0243 F 0.0333

A N
% I0.1540 ~ w Io.o122 + N 0.0167 +
il 0 | 0 | Mo

Figure 2.4: The mean velocity field of the full order model of an aorta (obtained from CFD
simulation) can be approximated as the linear combination of the first three modes obtained
from the proper orthogonal decomposition; the rest of the modes are truncated. (Reproduced
from Chatpattanasiri et al., 2023)

H 0.0498

0.0249

Physics-Informed Neural Networks (PINN) PINN is a class of mesh-free numerical methods
that approximate the solution of governing equations using fully-connected neural networks.
The key idea is to embed the physical laws directly into the training process by including the
residual of the PDE, boundary conditions, and initial conditions in the loss function.
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Figure 2.5: A classic example PINN setup for the solution of an advection-diffusion equation.
In this example, a and b are equation parameters, ¢ is a user-defined loss tolerance, x and ¢ are
the (input) independent variables (network features), and the neural network solution is given

by u. (Trahan et al., 2024)
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3 Time Stepping for Unsteady Problems

Time discretisation is often involved in solving the unsteady partial differential equation. This
step often follows space discretisation. To quickly develop the concepts, we consider a simple
1-D unsteady, viscous-dominant fluid problem:

ou 0%u

= o=, 3.1

ar ~ Hox2 31

Here, we seek a space- and time-dependent solution u(x, ), numerically.
First, we discretise the second-order partial derivative using the central differencing scheme
given by Equation 2.6 (assume constant grid size Ax):

Ou  uipy —2u; +ui
a T a0z

The time derivative is discretised by finding the slope of u between two successive time steps:

u M?ew _ u?ld

—a 3.2
ot At (3.2)
we use the superscript new to denote u; at the current time step, old to denote u; at the previous

time step.

Updating Equation 3.1,

new old ? ? ?

i Y Wiy = 2Ui YUy
= A

One question has emerged - for the R.H.S. of Equation A, should we take u;, u;—1, and u;+1

at the current time step (i.e. new), the previous time step (i.e. old), or a maybe a blending

between the two (e.g., half old and half new)? Answering this question reveals the heart of time

discretisation:

u

Explicit treatment For the R.H.S. of Equation A, we can take u;, u;—1, and u;,; solely from
the previous time step, i.e.

ul =pu ui+1 - (3 3)
At (Ax)? ' '

new _ u?ld old _ 21/[?1(] + Lt?ldl

This method is known as the explicit time treatment. The value of u at node i at the current time
step is updated from the values of «;, u;.1, and u;_; from the past step only, i.e.,

old

old
= 2u;" +u; ).

At
u old , K (u2d

= e (Ui
The explicit scheme is conditionally stable. This means, in order to obtain a physically mean-
ingful solution of u, the time step Ar must be limited below a threshold?; The violation of this rule

will lead to physically meaningless numerical oscillations in solution.

1in computational mechanics, the stability threshold is determined by the Courant-Friedrichs-Lewy (CFL) condi-
tion. For the diffusion-dominant problem, this condition takes the form uAt/Ax? < C, where C is a method-dependent
constant (e.g., C = 0.5 for the explicit central-difference scheme). This condition requires the time step to be small
enough such that diffusive information does not propagate faster than permitted by the spatial discretisation. There-
fore, the time step chosen is bounded by the minimum mesh size.
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Implicit treatment We can also take u;, u;_1, and u;,; solely from the current time step for the
R.H.S. of Equation A, i.e.

new _ M(_)ld ylew _ 9ynew 4 g mew

i i i+1 i i—1
= . 4
At K (Ax)2 (3.4)

u

This method is known as the implicit time treatment. The value of u at node i at the current
time step is updated from the values of u;.1, and u;_; at the current step only, and u; from the
previous step, i.e.,

At
P ey gy
new __ Ax
i = UA?
1+2——
Ax?

The implicit scheme is unconditionally stable, i.e., the numerical stability is irrelevant to At.
However, properly choosing the value of Ar is still important to maintain a decent numerical
resolution.

Semi-implicit treatment The semi-implicit time treatment (a.k.a. Crank-Nicolson method)
equally “blends” the explicit and implicit treatment of the R.H.S. terms of Equation A. In other
words, the explicit and implicit treatment contributes 50% to the solution u!%, respectively

new old old old old new new new
W —uym [T - 2w u +1 Uigp = 27" sy (3.5)
At 2 (Ax)? 2 (Ax)?
explicit implicit

new HAL HAL - 0ld . new Id , n HALY 1
ne (1 + m) = W(u?ﬂ +upy Aul G FulY) + (1 - | uf

At At At
= u®v = l_2’qu2 (u?}fi +upg + u?ldl +uYV) + (1 - %) u?ld] / (1 + 'u—) .

The semi-implicit time scheme is unconditionally stable.

Comments

Summary of three time discretisation schemes

« Explicit time treatment: x?¥ is determined solely from «¢'d, 4%, and u?4;

« Implicit time treatment: «"*" is determined solely from x4, 4%, and u°V;

» Semi-implicit time treatment: the explicit and implicit treatment contribute 50% to the
solution u*¥, respectively.
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Figure 3.1: Illustration of the use of three time discretisation schemes to update u°' to

u™*" by the time increment.
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Appendix A Sources of Error in Numerical Methods

As with all mathematical modelling, there are several potential sources of error in any solution
we obtain, but the use of numerical methods brings additional complications. Errors that are
common to all mathematical modelling:

* Modelling assumptions: For better or worse, there exist discrepancies between the
mathematical models we create and the real situation. For example, we may model a
fluid as Newtonian and incompressible, even though it is not (because we might not even
know the true rheology); Or we may treat an artery as having a circular cross-section.

» Parameter values: Parameters (e.g. fluid viscosity, dimensions of an experiment) are
usually determined experimentally, which can bring in errors. Unlike parameters in physics,
for example, experimental estimates of biological parameters (e.g. rate of production of
a chemical by a cell, or parameters for a rheological model of a viscoelastic physiological
fluid) tend to have high standard deviations.

Errors specific to computational/numerical methods:

« Machine error: Calculations done by the computer introduce an inaccuracy, caused by
the limited machine precision. In modern computers, most of the real numbers are only
stored to a certain level of precision — for example, “single precision” means that only the
first 32 bits of the binary representation of the number are stored. Because of this finite
precision, numbers must be rounded to the nearest representable value. As a result,
repeated arithmetic operations may accumulate round-off errors, and very large or very
small numbers can exceed the representable range, leading to overflow or underflow.

* NumericallDiscretisation error: The numerical method computes an approximation to
the solution, rather than the exact solution. Therefore, the difference between the exact
solution and the numerical approximation to the solution brings in the numerical error.

The magnitude and behaviour of the numerical error are determined by the employed
numerical scheme. In particular, the order of accuracy of a scheme indicates how the
error decreases as the grid spacing (or time step) is refined. For example, if you select
“Second Order Upwind” for the spatial discretisation in a commercial CFD package, this
means the leading truncation error term scales with (Ax)?, (thus, we say the scheme is
second-order accurate).

« Iteration error: When solving algebraic equation systems of the format Ax = b, rather
than inverting the matrix A directly through factorization (e.g., using Gaussian elimination),
computers are prone to use iterative solvers (e.g., conjugate gradient) to improve memory
efficiency and speed (as A often has millions of DOFs). Iteration brings in errors — again,
these methods are used to approximate A~! as much as possible. If the solver is stopped
before full convergence, the difference between the current approximation and the exact
solution is called the iteration error.

We conclude that the main considerations when choosing timestep and grid size in the numerical
method are a balance between the accuracy required, the time we are prepared to wait for the
solution, the size of the computer’'s memory, and the convergence criteria we adopt to stop the
solution.
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Appendix B Consistency, Stability, and Convergence

B.1 Introduction

In Sections 2 and 3, we have methods for spatial and temporal discretisation, and how to con-
struct a system of algebraic equations to be solved numerically in a computer. Although the
derivations are fairly intuitive, what remains unanswered is why these methods function exactly
in the way that we desire. Specifically, we seek answers for

1. Is the finite differencing construction of the PDE representing the exact PDE as the steps
(.e., Ax and Ar) tend to 0?

2. Is my numerical scheme stable? Will my solution ‘wiggle’ (e.g., unphysically oscillate) in
time?

3. And eventually, how are we assured of a converged solution?

Answering these questions requires a detailed understanding of a few fundamental properties
of numerical schemes, which we will discuss next.

B.2 Consistency

When deriving the finite difference approximation from the Taylor series expansions, we chose
to neglect the higher order terms in the series — the difference between the exact solution and the
numerical solution due to this truncation of higher order terms are known as the truncation error.

A numerical method is said to be consistent if the truncation errors become zero when the
discretisation spacing tends to zero (At — 0 and/or Ax — 0). In other words, when truncation
errors are removed, a consistent numerical method “recovers” the discretised system to the
original differential equations.

B.3 Stability

A numerical scheme is said to be stable if any component of the initial solution is not amplified
without bound, i.e., the solution will not diverge.

We shall introduce the von Neumann stability analysis method (a.k.a. the Fourier method),
which is the most widely used method to determine the stability of a linear numerical scheme
with the periodic boundary conditions. This method is based on the fact that the general solution
for such problems can be found as a linear combination of Fourier modes, and each mode
corresponds to a frequency. If, for each mode, the frequency does not grow without bound, we
say the numerical scheme is stable.

Example: von Neumann analysis of 1D heat equation using explicit time differencing

The discretised form of the 1-D heat equation using central differencing and explicit time
differencing is given by

(B.1)

ou _ 3_2M it —u (Wi~ 2up
ot~ ox2 At Ax?
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For von Neumann analysis, we first introduce the round-off error, £, which quantifies the
difference between the numerical solution, N, and the true (exact) solution, D, as

e=N-D,
The numerical solution, N, that satisfies Equation B.1, can be re-written in terms of £ and
D: N =D + ¢, yielding
(DI + &%) — (D! + &) . (DI, +&,)—2(Di+e)+(D!_ +&l_))
At Ax?
D" -Di & ¢ (Df - 2D} +D§_1) _ (sf - 2¢! +s;_1)

= i = i+1 i+1
Ax?

At At Ax?
We know that the exact solution, D, must satisfy the governing equation Equation B.1.
This enforces the round-off error ¢, must also satisfy Equation B.1,
e - & (s’ — 2¢! +g§_l)

i L _ u i+1
At Ax?

We shall now decompose the error into the linear combination of frequency modes. The
trick is realising the error, g, is time and space varying, i.e., (x,t). We can express ¢ as
a linear combination of different modes, m,

M
e(x,t) = Ze“tejk'"x, form=0,1,2,.... M

m=0

where k,, = % M is the number of intervals spanning the total length of the domain, L,

and j = V-1 is the imaginary unit (we use j to differentiate from the index i).

Substitute e(x, r) into Equation B.1, as

. . At . . . _
ea(t+At)ejkmx _ eatejkmx — H - (eatejkm(x+Ax) _ 2eatejkmx + eatejkm(x Ax)) ]

Divide both sides by % e/%* | yielding
At [ ;
eaAt - 1= % (e]kmAx + e—]kmAx _ 2) ,
where ¢“* quantifies how much the error increases/decreases between two successive
time steps, i.e. si*! = e If the stability is reached, the error will not grow after the

step increment, i.e.,
At| _ o t+1 ot
le“™ ] =le;™ /el < 1,

e is the amplification factor.

. . . . 0 1 - 0 . L
Realizing the trigonometry identity: sin? 3 = %, we thus write the amplification

At knAx
eaA’:1—4%sin2( n )

factor:

and in order to reach the numerical stability, || < 1:

A
1-4E= tsinz kmAx <1 =
Ax? 2

which is the condition that must be satisfied.

At
2

=

1
< -
2

e
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B.4 Convergence

A numerical method is said to be convergent if the solution from the discretised system of equa-
tions tends to the exact solution of the governing equation. For linear initial value problems, the
Lax equivalence theorem states that “if the discretisation scheme is consistent, then the stability
is a necessary and sufficient condition for convergence.”

The three properties of a numerical scheme are summarised in Figure B.1: Consistency ensures
that the discretisation recovers the governing equation as Ax — 0 and Ar — 0; stability ensures
bounded solutions of the algebraic system; and convergence guarantees that the numerical
solution approaches the exact solution as the mesh is refined.

discretization

. System of
Governing .
Equation Algebraic
Equations
consistency
stability
Exact Ax—0, A0 | Approximated
Solution convergence Solution

Figure B.1: Relationship between governing equations, their discretised algebraic forms, and
the resulting solutions.
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