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1.1 Tensors Analysis

Let
« ¢ denotes a scalar (0"-order tensor), e.g., density, viscosity.

« f(f; or f) denotes a vector (1%'-order tensor), e.g., velocity.

* T (T;; or T) denotes a matrix (2"%-order tensor), e.g., stress.

1. Kronecker delta: 5. Gradient of a 1%t-order tensor
Lo of,
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J 0 ifi#j J
Properties: 6. Gradient of a 2"-order tensor
bijXj = Xjs 0y =6 T},
(VT)ijk = W = Tjk,i
2. Alternating tensor (Levi-Civita): i
1 (i,j,k} = {1,2,3},{2,3,1},{3,1,2} 7. Divergence of a 1%-order tensor
eijk= -1 {ls.]sk} = {35251}5{25153}’{15352} v f afl f
0  otherwise =3 X, = Jii
Properties: 8. Divergence of a 2"9-order tensor
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o 9. Curl of a 1%t-order tensor

3. Dot product between two 1°-order tensors

0
( f)[ eljk ax] fk Eljk fk,]

a-b=aq; b
4. Cross product between two 1%t-order tensors 10. Curl of a 2"%-order tensor
(@axb), =g, a; by (VXD = €1pg Ty p
1.2 Constitutive Relationship for Fluids
1.2.1 Stress Tensor

1. In fluid mechanics, Cauchy stress tensor o;; describes the internal forces

exerted on the fluid elements. It is comprised of the normal stress, —pg;;,

and the deviatoric stress, d;;, fluid element
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2. Consider a fluid body at rest (u = 0, absence of any shear forces), the only Ty N

stress now acting on the fluid body is the hydrostatic stress, due to static )‘_ P

. XX
pressure load from the fluid (Pascal's Law): o},y4;ostatic = —PI-
4 - T (T
The hydrostatic stresses correspond to the diagonal elements in the Cauchy >
stress tensor, X
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3. The deviatoric (viscous) stress arises when a fluid body is in motion. It can be approximated as a linear function

of the strain rate tensor, ey,
1 0uk aul
d. =% ,  where =——+—).
ij ijkl €ki €kl ) <ax, ox,

where €, is a 4™M_order constitutive tensor (treat this as the coefficients in a linear function). Note that there
are 4 free indices, each of which ranges from 1 to 3 — this produces 3* = 81 combinations!

However, under various assumptions (material isotropy, tensor symmetry, and major symmetry), the number of
combinations of C,,;, can be reduced from 81 to 2. The only remaining terms are 4 and yu:

%Ajkl = A(Sij(skl + M(‘Sjk‘sil + aik(sjl)’

1

where 4 and p are the bulk viscosity (less significant, especially for incompressible fluid) and dynamic viscosity
(more significant), respectively. To put all the facts together, the deviatoric stress

dij = [46;;64 + n(6;16; + 66,11 ey
= 46;;(V - u;) + 2pe;;
0, incompressibility
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1.2.2 Strain Rate Tensor

Strain rate: e = %(ai + %) = %(Vu + (V")

ox; 0x;
in Cartesian coord. sys. \ in cylindrical coord. sys.
Gt n G| | [R5 R i3
e dget % I\ ek et %

1.2.3 Incompressible Fluid Constitutive Relationship
Putting everything together, the Cauchy stress tensor is

= _p,, + a5, 2 (a”"+au’>
= TP ij()xk H ox;  Ox;

= —pl+ A(V - wI + 2ue.
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Cauchy’s Equation For the incompressible fluid, Frle 0 (mass conservation). Hence, ¢;; = —ps;; +;4<0— + a—)
X X; X;

Cauchy’s equation is obtained by equating the total forces acting on a fluid element to its mass times acceleration,
based on Newton's 2" Law: F = ma.

Du
— = V-o+pf ,
p Di 14
mxa Finternal + Fexternal
where % = ?)—u + u - Vu is the material derivative. By expanding %‘t‘ and V - o, we will obtain the celebrated

t
Navier-Stokes equation, which depicts the conservation of linear momentum.

Drafted by B. Li, with input from H. El Nashar and C. H. Yap, January 1, 2026.
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