

1.1 Tensors Analysis

Let

- ϕ denotes a scalar (0^{th} -order tensor), e.g., density, viscosity.
- \mathbf{f} (f_i or \underline{f}) denotes a vector (1^{st} -order tensor), e.g., velocity.
- \mathbf{T} (T_{ij} or \underline{T}) denotes a matrix (2^{nd} -order tensor), e.g., stress.

1. Kronecker delta:

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Properties:

$$\delta_{ij}x_j = x_i, \quad \delta_{ij} = \delta_{ji}$$

2. Alternating tensor (Levi-Civita):

$$\epsilon_{ijk} = \begin{cases} 1 & \{i, j, k\} = \{1, 2, 3\}, \{2, 3, 1\}, \{3, 1, 2\} \\ -1 & \{i, j, k\} = \{3, 2, 1\}, \{2, 1, 3\}, \{1, 3, 2\} \\ 0 & \text{otherwise} \end{cases}$$

Properties:

$$\epsilon_{ijk}\epsilon_{ilm} = \delta_{jl}\delta_{km} - \delta_{jm}\delta_{kl}$$

$$\epsilon_{ijk} = -\epsilon_{ikj}$$

3. Dot product between two 1^{st} -order tensors

$$\mathbf{a} \cdot \mathbf{b} = a_i b_i$$

4. Cross product between two 1^{st} -order tensors

$$(\mathbf{a} \times \mathbf{b})_i = \epsilon_{ijk} a_j b_k$$

5. Gradient of a 1^{st} -order tensor

$$(\nabla \mathbf{f})_{ij} = \frac{\partial f_i}{\partial x_j} = f_{i,j}$$

6. Gradient of a 2^{nd} -order tensor

$$(\nabla \mathbf{T})_{ijk} = \frac{\partial T_{jk}}{\partial x_i} = T_{jk,i}$$

7. Divergence of a 1^{st} -order tensor

$$\nabla \cdot \mathbf{f} = \frac{\partial f_i}{\partial x_i} = f_{i,i}$$

8. Divergence of a 2^{nd} -order tensor

$$(\nabla \cdot \mathbf{T})_i = \frac{\partial T_{ij}}{\partial x_j} = T_{ij,j}$$

9. Curl of a 1^{st} -order tensor

$$(\nabla \times \mathbf{f})_i = \epsilon_{ijk} \frac{\partial}{\partial x_j} f_k = \epsilon_{ijk} f_{k,j}$$

10. Curl of a 2^{nd} -order tensor

$$(\nabla \times \mathbf{T})_{ij} = \epsilon_{ipq} T_{qj,p}$$

1.2 Constitutive Relationship for Fluids

1.2.1 Stress Tensor

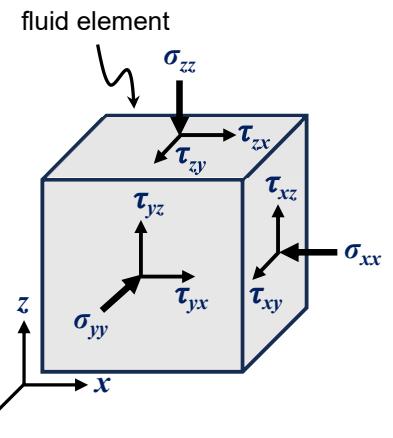
1. In fluid mechanics, Cauchy stress tensor σ_{ij} describes the internal forces exerted on the fluid elements. It is comprised of the **normal** stress, $-p\delta_{ij}$, and the **deviatoric** stress, d_{ij} ,

$$\sigma_{ij} = \begin{bmatrix} \sigma_{11} & \tau_{12} & \tau_{13} \\ \tau_{21} & \sigma_{22} & \tau_{23} \\ \tau_{31} & \tau_{32} & \sigma_{33} \end{bmatrix} = -p\delta_{ij} + d_{ij}.$$

2. Consider a fluid body at rest ($\mathbf{u} = 0$, absence of any shear forces), the only stress now acting on the fluid body is the **hydrostatic** stress, due to static pressure load from the fluid (Pascal's Law): $\sigma_{\text{hydrostatic}} = -p\mathbf{I}$.

The hydrostatic stresses correspond to the diagonal elements in the Cauchy stress tensor,

$$\sigma_{ij} = \begin{bmatrix} -p & 0 & 0 \\ 0 & -p & 0 \\ 0 & 0 & -p \end{bmatrix} = -p\delta_{ij} \quad \Rightarrow \quad p = -\frac{1}{3} \text{tr}(\sigma_{ij}).$$



3. The **deviatoric** (viscous) stress arises when a fluid body is in motion. It can be approximated as a linear function of the strain rate tensor, e_{kl}

$$d_{ij} = \mathcal{C}_{ijkl} e_{kl}, \quad \text{where} \quad e_{kl} = \frac{1}{2} \left(\frac{\partial u_k}{\partial x_l} + \frac{\partial u_l}{\partial x_k} \right).$$

where \mathcal{C}_{ijkl} is a 4th-order constitutive tensor (treat this as the coefficients in a linear function). Note that there are 4 free indices, each of which ranges from 1 to 3 – this produces $3^4 = 81$ combinations!

However, under *various* assumptions (material isotropy, tensor symmetry, and major symmetry), the number of combinations of \mathcal{C}_{ijkl} can be reduced from 81 to 2. The only remaining terms are λ and μ :

$$\mathcal{C}_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{jk} \delta_{il} + \delta_{ik} \delta_{jl}),$$

where λ and μ are the bulk viscosity (less significant, especially for incompressible fluid) and dynamic viscosity (more significant), respectively. To put all the facts together, the deviatoric stress

$$\begin{aligned} d_{ij} &= [\lambda \delta_{ij} \delta_{kl} + \mu (\delta_{jk} \delta_{il} + \delta_{ik} \delta_{jl})] e_{kl} \\ &= \lambda \delta_{ij} (\nabla \cdot \mathbf{u}_i) + 2\mu e_{ij} \\ &= \lambda \delta_{ij} \cancel{\frac{\partial u_k}{\partial x_k}} + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right). \end{aligned}$$

1.2.2 Strain Rate Tensor

Strain rate: $\mathbf{e} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) = \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^\top)$		
in Cartesian coord. sys.	in cylindrical coord. sys.	
$\begin{pmatrix} \frac{\partial u}{\partial x} & \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) \\ \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) & \frac{\partial v}{\partial y} & \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) \\ \frac{1}{2} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right) & \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y} \right) & \frac{\partial w}{\partial z} \end{pmatrix}$	$\begin{pmatrix} \frac{\partial u_r}{\partial r} & \frac{1}{2} (r \frac{\partial (u_\theta/r)}{\partial r} + \frac{1}{r} \frac{\partial u_r}{\partial \theta}) & \frac{1}{2} (\frac{\partial u_z}{\partial r} + \frac{\partial u_r}{\partial z}) \\ \frac{1}{2} (r \frac{\partial (u_\theta/r)}{\partial r} + \frac{1}{r} \frac{\partial u_r}{\partial \theta}) & \frac{1}{r} \frac{\partial u_\theta}{\partial \theta} + \frac{u_r}{r} & \frac{1}{2} (\frac{\partial u_\theta}{\partial z} + \frac{1}{r} \frac{\partial u_z}{\partial \theta}) \\ \frac{1}{2} (\frac{\partial u_z}{\partial r} + \frac{\partial u_r}{\partial z}) & \frac{1}{2} (\frac{\partial u_\theta}{\partial z} + \frac{1}{r} \frac{\partial u_z}{\partial \theta}) & \frac{\partial u_z}{\partial z} \end{pmatrix}$	

1.2.3 Incompressible Fluid Constitutive Relationship

Putting everything together, the Cauchy stress tensor is

$$\begin{aligned} \sigma_{ij} &= -p \delta_{ij} + d_{ij} \\ &= -p \delta_{ij} + \lambda \delta_{ij} \frac{\partial u_k}{\partial x_k} + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \\ &= -p \mathbf{I} + \lambda (\nabla \cdot \mathbf{u}) \mathbf{I} + 2\mu \mathbf{e}. \end{aligned}$$

Cauchy's Equation For the incompressible fluid, $\frac{\partial u_k}{\partial x_k} = 0$ (mass conservation). Hence, $\sigma_{ij} = -p \delta_{ij} + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$.

Cauchy's equation is obtained by equating the total forces acting on a fluid element to its mass times acceleration, based on Newton's 2nd Law: $\mathbf{F} = m\mathbf{a}$.

$$\underbrace{\rho \frac{D\mathbf{u}}{Dt}}_{m \times \mathbf{a}} = \underbrace{\nabla \cdot \sigma + \rho \mathbf{f}}_{\mathbf{F}_{\text{internal}} + \mathbf{F}_{\text{external}}},$$

where $\frac{D\mathbf{u}}{Dt} = \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}$ is the material derivative. By expanding $\frac{D\mathbf{u}}{Dt}$ and $\nabla \cdot \sigma$, we will obtain the celebrated Navier-Stokes equation, which depicts the conservation of linear momentum.