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5.1 Dimensional Analysis
Buckingham-Π Theorem The Buckingham-Π theorem states that if an equation involving 𝑘 variables is dimension-
ally homogeneous (i.e., L.H.S. units = R.H.S. units),

𝑢1 = 𝑓(𝑢2, 𝑢3, ..., 𝑢𝑘),
it can be reduced to a relationship among (𝑘−𝑟) independent dimensionless products, where 𝑟 is the minimum number
of reference dimensions required to describe the variables,

Π1 = 𝜙(Π2, Π3, ...Π𝑘−𝑟).

Variables: Acceleration of gravity, 𝑔; Bulk modulus, 𝐸𝑣; Characteristic length, 𝐿; Density, 𝜌;
Frequency of oscillating flow, 𝜔; Pressure, 𝑝; Speed of sound, 𝑐; Surface tension, 𝜎𝑠 ; Velocity, 𝑈 .
Dimensionless

group Name Interpretation Types of Applications

𝜌𝑈𝐿/𝜇 Reynolds number, Re inertia force
viscous force

Generally of importance in all
types of fluid dynamics problems

𝑈/√𝑔𝐿 Froude number, Fr inertia force
gravitational force

Flow with a free surface

𝑝/𝜌𝑈 2 Euler number, Eu pressure force
inertia force

Problems in which pressure, or
pressure differences, are of

interest

𝑈/𝑐 Mach number, Ma inertia force
compressibility force

Flows in which the compressibility
of the fluid is important

𝜔𝐿/𝑈 Strouhal number, St inertia(local) force
inertia (convective) force

Unsteady flow with a characteristic
frequency of oscillation

𝜌𝑈 2𝐿/𝜎𝑠 Weber number, We inertia force
surface tension force

Problems in which surface tension
is important

Table 1: Common variables and dimensionless groups in fluid mechanics.

Parameter Symbol Dimensions Parameter Symbol Dimensions

Acceleration 𝑎 [𝐿1𝑇 −2] Surface tension 𝜎𝑠 [𝑀1𝑇 −2]
Angle 𝜃, 𝜙, etc. 1 (none) Velocity 𝑈 [𝐿1𝑇 −1]
Density 𝜌 [𝑀1𝐿−3] Viscosity 𝜇 [𝑀1𝐿−1𝑇 −1]
Force 𝐹 [𝑀1𝐿1𝑇 −2] Volume flow rate 𝑄 [𝐿3𝑇 −1]
Frequency 𝑓 [𝑇 −1] Pressure 𝑝 [𝑀1𝐿−1𝑇 −2]

Table 2: Table of parameters with symbols and primary dimensions in two columns. [𝑀]: mass, [𝑇 ]: time; [𝐿]: length.

5.2 Non-Dimensional Navier-Stokes Equation
• Define the non-dimensional variables

x∗ = x
𝐿, u∗ = u

𝑈 , 𝑡∗ = 𝑡
𝐿/𝑈 , 𝑝∗ = 𝑝

𝑃0
,

where 𝐿, 𝑈 are the characteristic length and velocity, respectively.

• The dimensionless Navier-Stokes momentum equation is

Re(
𝜕u∗

𝜕𝑡∗ + (u∗ ⋅ ∇∗)u∗
) = − 𝑃0

𝜇𝑈
𝐿

∇∗𝑝∗ + ∇∗2u∗,

where 𝑃0 = 𝜇𝑈
𝐿 max(1, Re), i.e., the viscous scale (Re < 1) or dynamic scale (Re > 1). This formulation ensures

the pressure term has the same order of magnitude as other terms, since there is no natural scaling for pressure.

• The dimensionless continuity equation is
∇∗ ⋅ u∗ = 0.
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Small Re flow (Re ≪ 1) 𝑃0 = 𝜇𝑈/𝐿 and the L.H.S. eliminated,

�����������:0
Re(

𝜕u∗

𝜕𝑡∗ + (u∗ ⋅ ∇∗)u∗
) = −∇∗𝑝∗ + ∇∗2u∗ ⟹ ∇∗𝑝∗ = ∇∗2u∗ ⟺ 𝜇∇2u = ∇𝑝

which is known as the Stokes equation that can be solved analytically due to its linearity.

Governing Equation of Stokes Flow

Define the vorticity as 𝝎 = ∇ × u

𝜇∇2u = −𝜇∇ × 𝝎 due to ∇ × 𝝎 = ∇ × (∇ × u) =���∇ ⋅ u − ∇2u.

Further, take the curl of 𝜇∇2u = ∇𝑝:

∇ × ∇𝑝⏟
“curl of grad
is zero”

= ∇ × (𝜇∇2u) ⟹ 0 = −𝜇∇ × (∇ × 𝝎)
0 = −𝜇[ ∇(∇ ⋅ 𝝎) − ∇2𝝎⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

by ∇×(∇×A)=∇(∇⋅A)−∇2A

]

0 = −𝜇[∇(∇ ⋅ ∇ × u)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
“div of curl
is zero”

−∇2𝝎].

The above derivation results in ∇2𝝎 = 0. This leads to the Laplace equation for vorticity in Stokes flow.

recirculation

Stokes (creeping) flow vortices in the wake

Kármán vortex street

repeating patterns 

of vortices

FIG. 1: Flow passing around a cylinder at different Reynolds numbers. The top left scenario depicts the Stokes flow
when Re ≪ 1 - no flow separation.

Large Re flow (Re ≫ 1) 𝑃0 = 𝜌𝑈 2 and the viscous term eliminated (hence, the fluid is approximated nearly inviscid),

𝜕u∗

𝜕𝑡∗ + (u∗ ⋅ ∇∗)u∗ = −∇∗𝑝∗ ⟹ 𝜕u
𝜕𝑡 + (u ⋅ ∇)u = −∇𝑝,

which is known as the Euler equation.

(a) (b)

FIG. 2: The velocity profile of flow between two parallel plates when the fluid is (a) affected by viscosity, (b) inviscid.
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