

5.1 Dimensional Analysis

Buckingham-II Theorem The Buckingham-II theorem states that if an equation involving k variables is dimensionally homogeneous (i.e., L.H.S. units = R.H.S. units),

$$u_1 = f(u_2, u_3, \dots, u_k),$$

it can be reduced to a relationship among $(k - r)$ independent dimensionless products, where r is the minimum number of reference dimensions required to describe the variables,

$$\Pi_1 = \phi(\Pi_2, \Pi_3, \dots, \Pi_{k-r}).$$

Variables: Acceleration of gravity, g ; Bulk modulus, E_v ; Characteristic length, L ; Density, ρ ; Frequency of oscillating flow, ω ; Pressure, p ; Speed of sound, c ; Surface tension, σ_s ; Velocity, U .

Dimensionless group	Name	Interpretation	Types of Applications
$\rho U L / \mu$	Reynolds number, Re	inertia force viscous force	Generally of importance in all types of fluid dynamics problems
U / \sqrt{gL}	Froude number, Fr	inertia force gravitational force	Flow with a free surface
$p / \rho U^2$	Euler number, Eu	pressure force inertia force	Problems in which pressure, or pressure differences, are of interest
U / c	Mach number, Ma	inertia force compressibility force	Flows in which the compressibility of the fluid is important
$\omega L / U$	Strouhal number, St	inertia(local) force inertia (convective) force	Unsteady flow with a characteristic frequency of oscillation
$\rho U^2 L / \sigma_s$	Weber number, We	inertia force surface tension force	Problems in which surface tension is important

Table 1: Common variables and dimensionless groups in fluid mechanics.

Parameter	Symbol	Dimensions	Parameter	Symbol	Dimensions
Acceleration	a	$[L^1 T^{-2}]$	Surface tension	σ_s	$[M^1 T^{-2}]$
Angle	$\theta, \phi, \text{etc.}$	1 (none)	Velocity	U	$[L^1 T^{-1}]$
Density	ρ	$[M^1 L^{-3}]$	Viscosity	μ	$[M^1 L^{-1} T^{-1}]$
Force	F	$[M^1 L^1 T^{-2}]$	Volume flow rate	Q	$[L^3 T^{-1}]$
Frequency	f	$[T^{-1}]$	Pressure	p	$[M^1 L^{-1} T^{-2}]$

Table 2: Table of parameters with symbols and primary dimensions in two columns. $[M]$: mass, $[T]$: time; $[L]$: length.

5.2 Non-Dimensional Navier-Stokes Equation

- Define the non-dimensional variables

$$\mathbf{x}^* = \frac{\mathbf{x}}{L}, \quad \mathbf{u}^* = \frac{\mathbf{u}}{U}, \quad t^* = \frac{t}{L/U}, \quad p^* = \frac{p}{P_0},$$

where L , U are the characteristic length and velocity, respectively.

- The dimensionless Navier-Stokes momentum equation is

$$Re \left(\frac{\partial \mathbf{u}^*}{\partial t^*} + (\mathbf{u}^* \cdot \nabla^*) \mathbf{u}^* \right) = - \frac{P_0}{\mu U} \nabla^* p^* + \nabla^{*2} \mathbf{u}^*,$$

where $P_0 = \frac{\mu U}{L} \max(1, Re)$, i.e., the viscous scale ($Re < 1$) or dynamic scale ($Re > 1$). This formulation ensures the pressure term has the same order of magnitude as other terms, since there is no natural scaling for pressure.

- The dimensionless continuity equation is

$$\nabla^* \cdot \mathbf{u}^* = 0.$$

Small Re flow ($Re \ll 1$) $P_0 = \mu U/L$ and the L.H.S. eliminated,

$$Re \left(\frac{\partial \mathbf{u}^*}{\partial t^*} + (\mathbf{u}^* \cdot \nabla^*) \mathbf{u}^* \right) \xrightarrow{0} -\nabla^* p^* + \nabla^{*2} \mathbf{u}^* \implies \nabla^* p^* = \nabla^{*2} \mathbf{u}^* \iff \mu \nabla^2 \mathbf{u} = \nabla p$$

which is known as the **Stokes equation** that can be solved analytically due to its linearity.

Governing Equation of Stokes Flow

Define the vorticity as $\boldsymbol{\omega} = \nabla \times \mathbf{u}$

$$\mu \nabla^2 \mathbf{u} = -\mu \nabla \times \boldsymbol{\omega} \quad \text{due to} \quad \nabla \times \boldsymbol{\omega} = \nabla \times (\nabla \times \mathbf{u}) = \nabla \cdot \mathbf{u} - \nabla^2 \mathbf{u}.$$

Further, take the curl of $\mu \nabla^2 \mathbf{u} = \nabla p$:

$$\begin{aligned} \nabla \times \nabla p &= \nabla \times (\mu \nabla^2 \mathbf{u}) \implies 0 = -\mu \nabla \times (\nabla \times \boldsymbol{\omega}) \\ &\text{"curl of grad is zero"} & 0 &= -\mu \left[\underbrace{\nabla(\nabla \cdot \boldsymbol{\omega})}_{\text{by } \nabla \times (\nabla \times \mathbf{A}) = \nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}} - \nabla^2 \boldsymbol{\omega} \right] \\ &0 &0 &= -\mu \left[\underbrace{\nabla(\nabla \cdot \nabla \times \mathbf{u})}_{\text{"div of curl is zero"}}, -\nabla^2 \boldsymbol{\omega} \right]. \end{aligned}$$

The above derivation results in $\nabla^2 \boldsymbol{\omega} = 0$. This leads to the Laplace equation for vorticity in Stokes flow.

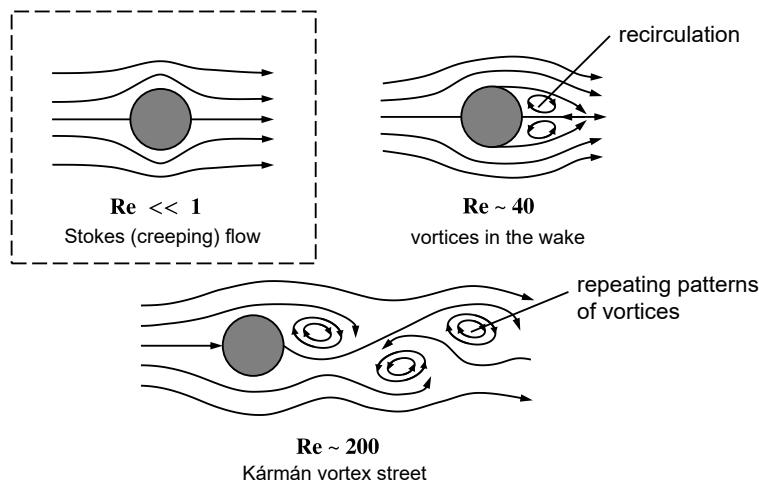


FIG. 1: Flow passing around a cylinder at different Reynolds numbers. The top left scenario depicts the Stokes flow when $Re \ll 1$ - no flow separation.

Large Re flow ($Re \gg 1$) $P_0 = \rho U^2$ and the viscous term eliminated (hence, the fluid is approximated nearly inviscid),

$$\frac{\partial \mathbf{u}^*}{\partial t^*} + (\mathbf{u}^* \cdot \nabla^*) \mathbf{u}^* = -\nabla^* p^* \implies \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p,$$

which is known as the **Euler equation**.

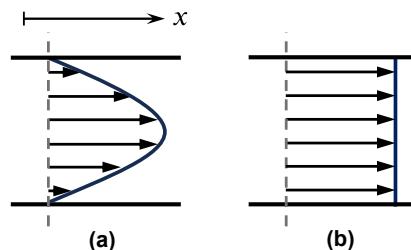


FIG. 2: The velocity profile of flow between two parallel plates when the fluid is (a) affected by viscosity, (b) inviscid.