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6.1 Finite Difference Method: An Example
Consider the following example boundary value problem:

d%u du

@4‘ a—o, XG[O,l],
with boundary conditions u(0) = 1, u(1) = 0.

Analytical Solution Procedure
Letu = ™, hence u’ = re’™* and u” = r?¢™. Substituting this relation back to the governing equation, we get

0 = r2e’™ +2re'™
= (r? +2r)e’~
Hence,r,=0=u=1landr, = 2= u=e>*,
u= A+ Be >,

where A and B are two constants to be determined from the boundary conditions. Apply the boundary condi-

tions,
e—2
A+B=1 A=—1"5
) =
A+e?B=0 g1
- =)
l1—e
Hence, the general solution is
-2
u(x) = ——< 1L 2

1—e‘2+ l—e—ze

Numerical Solution Procedure

First, we discritize the entire continuous domain into a finite number of N grids, with a constant distance
between two adjacent grids being Ax (practically, of your own choice).

boundary

Ax @ discretization
\ —
Ao oo floffofofofolfolfeol]

centroid 1 2 i-1 i i+1 N-1 N

Let u(x; + Ax) and u(x; — Ax) denote the value of u at next grid and the previous grid in relation to the current
grid x;. We can use Taylor series expansion to find the value of u(x; + Ax) and u(x; — Ax) in terms of u(x;),

u(x; — Ax) = u(x;) — u' (x;)Ax + %u”(xi)sz — éu”’(xi)Ax3 + 6(AxY (1)

u(x; + Ax) = u(x;) + u' (x;)Ax + %u”(x,)sz + éu’”(x,»)Ax3 + 6(AxY 2)
Equation (1) + (2) = we will get the expression of the second-order derivative term (neglect the H.O.T.)

u(x; — Ax) + ux; + Ax) = 2u(x;) + u” (x;)Ax* + 6(Ax*)
=>u’(x;) = Asz[u(x,- — Ax) = 2u(x;) + u(x; + Ax)] + B(ATZ)
Equation (2) - (1) = we will get the expression of the first order derivative term, (neglect the H.O.T.)
u(x + Ax) — u(x — Ax) = 2u’ (x)Ax + %u”’ (X)AX> + 6(Ax*h
=>u'(x;) = ﬁ[u(xi + Ax) — u(x; — Ax)] + OAT?Y

The method shown above is commonly referred to as the central differencing scheme, which has a 2"-order
accuracy.
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FIG. 1: A graphical illustration of approximating the first-order derivative du;/dx using forward, backward, and
central differencing schemes.

Hence, the governing equation
1 2
=> E[u(x[ — Ax) — 2u(x;) + u(x; + Ax)] + m[u(xi + Ax) —u(x; — Ax)] =0
1 1 2 1 1
<E - A—x)u(xi — Ax) + < = E)u(x,») + <E + A—x)u(xi +Ax)=0
For the index i ranges from 1 to N — 1, the above expression can be converted into the matrix form Au = b,

2
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and u is solvable by finding A~'b.
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FIG. 2: Comparison of the analytical solution and the numerical solutions (discretised with N = 5 and N = 50) of the
same governing equation.

Drafted by B. Li, with input from C. H. Yap, January 1, 2026.
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