

6.1 Finite Difference Method: An Example

Consider the following example boundary value problem:

$$\frac{d^2u}{dx^2} + 2\frac{du}{dx} = 0, \quad x \in [0, 1],$$

with boundary conditions $u(0) = 1$, $u(1) = 0$.

Analytical Solution Procedure

Let $u = e^{rx}$, hence $u' = re^{rx}$ and $u'' = r^2e^{rx}$. Substituting this relation back to the governing equation, we get

$$\begin{aligned} 0 &= r^2e^{rx} + 2re^{rx} \\ &= (r^2 + 2r)e^{rx} \end{aligned}$$

Hence, $r_1 = 0 \Rightarrow u = 1$ and $r_2 = -2 \Rightarrow u = e^{-2x}$,

$$u = A + Be^{-2x},$$

where A and B are two constants to be determined from the boundary conditions. Apply the boundary conditions,

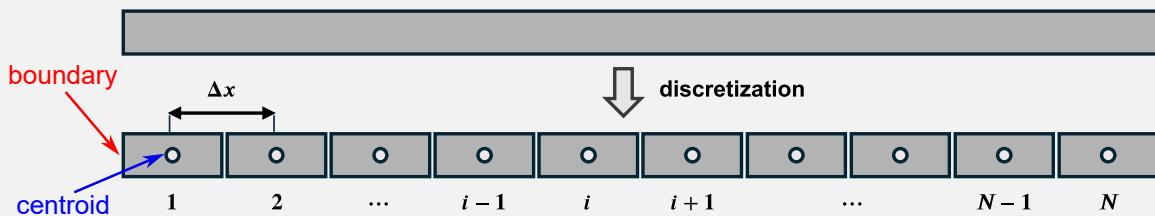
$$\begin{cases} A + B = 1 \\ A + e^{-2}B = 0 \end{cases} \Rightarrow \begin{cases} A = -\frac{e^{-2}}{1-e^{-2}} \\ B = \frac{1}{1-e^{-2}} \end{cases}.$$

Hence, the general solution is

$$u(x) = -\frac{e^{-2}}{1-e^{-2}} + \frac{1}{1-e^{-2}}e^{-2x}.$$

Numerical Solution Procedure

First, we **discretize** the entire continuous domain into a finite number of N grids, with a constant distance between two adjacent grids being Δx (practically, of your own choice).



Let $u(x_i + \Delta x)$ and $u(x_i - \Delta x)$ denote the value of u at next grid and the *previous grid* in relation to the *current grid* x_i . We can use Taylor series expansion to find the value of $u(x_i + \Delta x)$ and $u(x_i - \Delta x)$ in terms of $u(x_i)$,

$$u(x_i - \Delta x) = u(x_i) - u'(x_i)\Delta x + \frac{1}{2}u''(x_i)\Delta x^2 - \frac{1}{6}u'''(x_i)\Delta x^3 + \mathcal{O}(\Delta x^4) \quad (1)$$

$$u(x_i + \Delta x) = u(x_i) + u'(x_i)\Delta x + \frac{1}{2}u''(x_i)\Delta x^2 + \frac{1}{6}u'''(x_i)\Delta x^3 + \mathcal{O}(\Delta x^4) \quad (2)$$

Equation (1) + (2) \Rightarrow we will get the expression of the second-order derivative term (neglect the H.O.T.)

$$\begin{aligned} u(x_i - \Delta x) + u(x_i + \Delta x) &= 2u(x_i) + u''(x_i)\Delta x^2 + \mathcal{O}(\Delta x^4) \\ \Rightarrow u''(x_i) &= \frac{1}{\Delta x^2} [u(x_i - \Delta x) - 2u(x_i) + u(x_i + \Delta x)] + \mathcal{O}(\Delta x^2) \end{aligned}$$

Equation (2) - (1) \Rightarrow we will get the expression of the first order derivative term, (neglect the H.O.T.)

$$\begin{aligned} u(x + \Delta x) - u(x - \Delta x) &= 2u'(x)\Delta x + \frac{1}{3}u'''(x)\Delta x^3 + \mathcal{O}(\Delta x^4) \\ \Rightarrow u'(x_i) &= \frac{1}{2\Delta x} [u(x_i + \Delta x) - u(x_i - \Delta x)] + \mathcal{O}(\Delta x^2) \end{aligned}$$

The method shown above is commonly referred to as the **central differencing scheme**, which has a 2nd-order accuracy.

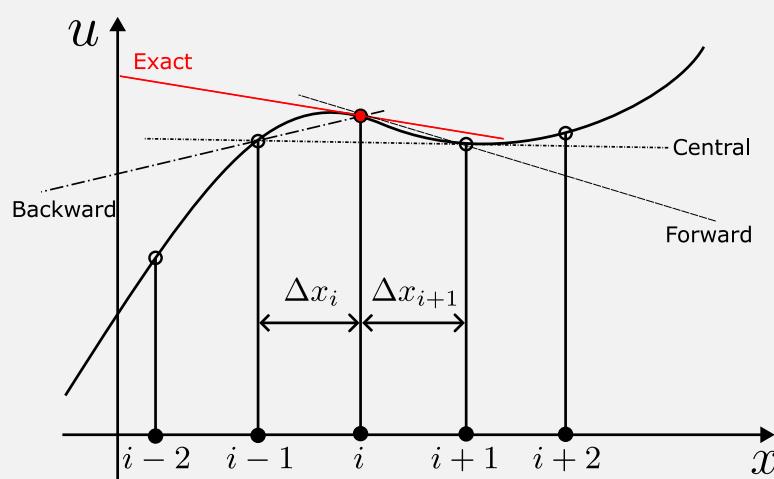


FIG. 1: A graphical illustration of approximating the first-order derivative du_i/dx using forward, backward, and central differencing schemes.

Hence, the governing equation

$$\Rightarrow \frac{1}{\Delta x^2} [u(x_i - \Delta x) - 2u(x_i) + u(x_i + \Delta x)] + \frac{2}{2\Delta x} [u(x_i + \Delta x) - u(x_i - \Delta x)] = 0$$

$$\Rightarrow \left(\frac{1}{\Delta x^2} - \frac{1}{\Delta x} \right) u(x_i - \Delta x) + \left(-\frac{2}{\Delta x^2} \right) u(x_i) + \left(\frac{1}{\Delta x^2} + \frac{1}{\Delta x} \right) u(x_i + \Delta x) = 0$$

For the index i ranges from 1 to $N - 1$, the above expression can be converted into the matrix form $\mathbf{A}\mathbf{u} = \mathbf{b}$,

$$\underbrace{\begin{pmatrix} \left(-\frac{2}{\Delta x^2} \right) & \left(\frac{1}{\Delta x^2} + \frac{1}{\Delta x} \right) & 0 & 0 & \dots & 0 & 0 \\ \left(\frac{1}{\Delta x^2} - \frac{1}{\Delta x} \right) & \left(-\frac{2}{\Delta x^2} \right) & \left(\frac{1}{\Delta x^2} + \frac{1}{\Delta x} \right) & 0 & \dots & 0 & 0 \\ 0 & \left(\frac{1}{\Delta x^2} - \frac{1}{\Delta x} \right) & \left(-\frac{2}{\Delta x^2} \right) & \left(\frac{1}{\Delta x^2} + \frac{1}{\Delta x} \right) & \dots & 0 & 0 \\ 0 & 0 & \left(\frac{1}{\Delta x^2} - \frac{1}{\Delta x} \right) & \left(-\frac{2}{\Delta x^2} \right) & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & 0 & 0 \\ 0 & 0 & 0 & 0 & \dots & \left(-\frac{2}{\Delta x^2} \right) & \left(\frac{1}{\Delta x^2} + \frac{1}{\Delta x} \right) \\ 0 & 0 & 0 & 0 & \dots & \left(\frac{1}{\Delta x^2} - \frac{1}{\Delta x} \right) & \left(-\frac{2}{\Delta x^2} \right) \end{pmatrix}}_{\mathbf{A}} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ \vdots \\ u_{N-2} \\ u_{N-1} \\ \mathbf{u} \end{pmatrix} = \begin{pmatrix} -\frac{1}{\Delta x^2} + \frac{1}{\Delta x} \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix},$$

and \mathbf{u} is solvable by finding $\mathbf{A}^{-1}\mathbf{b}$.

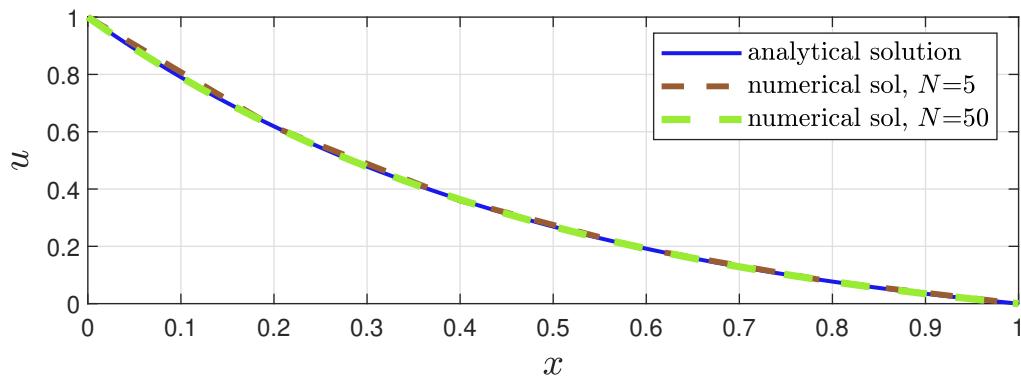


FIG. 2: Comparison of the analytical solution and the numerical solutions (discretised with $N = 5$ and $N = 50$) of the same governing equation.