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7.1 Lumped Parameter Networks
Resistance, Compliance, Inertance

Resistance Compliance Inertance

𝑄 = Δ𝑝/𝑅 𝑄 = 𝐶 𝜕𝑝
𝜕𝑡 𝑝 = 𝐿𝜕𝑄

𝜕𝑡

• Resistance 𝑅: analogous to the electrical resistance, which models the dissipation of energy. The flow rate 𝑄
is analogous to the electrical current (usually denoted by 𝐼), and the pressure 𝑝 is analogous to the electrical
voltage (usually denoted by 𝑉 ).

• Compliance 𝐶: analogous to the electrical capacitor, which models the expansion of cardiovascular chambers
under pressure, allowing them to store more fluid.

• Inertance 𝐿: analogous to the electrical inductor, which models the inertial effects of the fluid. When the fluid
momentum is substantial, as the pressure on forward-flowing fluid reverses, the fluid will not suddenly reverse
its direction, but decelerate over a transient.

Solving a Lumped Parameter Network Consider the example lumped parameter network,
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... which yields a linear system with 4 unknowns (𝑝2, 𝑄1,
𝑄2, 𝑄3) and 4 simultaneous equations:
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𝑝2 − 𝑝1 = 𝑅1𝑄1,

𝑝3 − 𝑝2 = 𝑅2𝑄2,

𝑄3 = 𝐶(𝑝(𝑡)
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2 )/Δ𝑡,

𝑄1 = 𝑄2 + 𝑄3.

Note that 𝑝(𝑡−1)
2 denotes the pressure 𝑝2 at the previous time step 𝑡 − 1; (𝑝(𝑡)

2 − 𝑝(𝑡−1)
2 )/Δ𝑡 is an expression of the time

derivative in the backward Euler fashion. (cf. electrical capacitor 𝐼 = 𝐶 ⋅ d𝑉 /d𝑡).

The above linear system can be arranged into a matrix system, Ax = b,
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and can be easily solved by inversion of the coefficient matrix: x = A−1b.

7.2 Windkessel Models
The Windkessel models are a category of lumped parameter models used to mathematically describe the blood
pressure waveform in the large, elastic arteries. The Windkessel effect represents the ability of large arteries to
store blood during systole through elastic expansion and to release it during diastole, thereby smoothing the pulsatile
output of the heart into a more continuous peripheral flow.

Two-element Windkessel Model The simplest Windkessel model accounting for the distal resistance and aortic
wall compliance.

𝑝(𝑡)
𝑄

𝑅
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Governing Equation:

d𝑝(𝑡)
d𝑡 + 𝑝(𝑡)

𝑅𝐶 = 𝑄
𝐶

where 𝐶 denotes the vessel compliance, 𝑅 denotes the
peripheral (distal) resistance. The analytical solution has
the form 𝑝(𝑡) = 𝑝init ⋅ 𝑒−𝑡/𝑅𝐶 .
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Three-element Windkessel Model The two-element Windkessel only predicts the diastolic pressure as an expo-
nential decay, but not the pressure upstroke in early systole. The three-element Windkessel model addresses this
limitation by including a characteristic impedance, 𝑍𝑐 , before the 𝑅𝐶 network.
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Governing Equation:

d𝑝(𝑡)
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where 𝑍𝑐 is the characteristic impedance, which denotes
the resistance of the proximal vessel.

Four-element Windkessel Model An inductor component, 𝐿, is introduced to account for the frequency-dependent
relationship between pressure and flow, thereby representing blood inertance and capturing variations in arterial pres-
sure response with changes in heart rate.
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where 𝑍total = 𝑗𝜔𝐿𝑍𝑐
𝑗𝜔𝐿 + 𝑍𝑐

is the total impedance of the par-

allel network - the characteristic impedance, 𝑍𝑐 and the
inductor, 𝐿.

7.3 Moens-Korteweg Model of Pulse Wave Velocity
Pulse waves Blood is ejected into the aorta, generating a rapidly propagating wave of pressure (NOT flow!) ac-
companied by deformation of the aortic wall. This wave, also known as the pulse wave, travels along the arteries
with a much faster speed (by orders of magnitude) than the bulk motion of blood, and undergoes reflections at sites
of impedance mismatch such as arterial bifurcations.

The velocity of the pulse wave can be approximated by Moens-Korteweg model:

PWV = √
𝐸ℎ
2𝑅𝜌,

where 𝐸 denotes the linear elasticity of the aortic wall, ℎ and 𝑅 are the wall thickness and wall radius, respectively,
where ℎ ≪ 𝑅; and 𝜌 is the density of the blood. The Moens-Korteweg equation assumes blood is inviscid.

By definition, PWV increases with the stiffness of the vessels and decreases with the radius of the vessel.
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FIG. 1: Schematic of the formation of the central arterial pressure waveform.

Drafted by B. Li, with input from C. H. Yap, January 1, 2026.
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