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List of important notation used in the course

As far as possible, the notation is consistent throughout the course. We use the following notation:

Symbol Definition Dimensions

x = (𝑥𝑖) spatial position 𝐿

(𝑥, 𝑦, 𝑧) Cartesian coordinates 𝐿

(𝑥1, 𝑥2, 𝑥3) Cartesian coordinates 𝐿

(𝑟, 𝜃, 𝑧) cylindrical coordinates (𝐿, 1, 𝐿)
(𝑟, 𝜃, 𝜙) spherical coordinates (𝐿, 1, 1)
∇(★) gradient operator 1/𝐿
∇ · (★) divergence operator 1/𝐿
∇ × (★) curl operator 1/𝐿
∇2(★) Laplacian operator 1/𝐿2

i, j, k unit vectors in Cartesian coordinates 1
x̂, r̂, e1, e𝑟 , e𝜃 , etc. unit vectors in other directions 1

𝑡 time 𝑇

u = (𝑢𝑖) fluid velocity 𝐿/𝑇
𝑢, 𝑣, 𝑤 velocity components in Cartesian coordinates 𝐿/𝑇
𝑢1, 𝑢2, 𝑢3 velocity components in Cartesian coordinates 𝐿/𝑇
𝑢𝑟 , 𝑢𝜃 , 𝑢𝑧 velocity components in cylindrical coordinates 𝐿/𝑇
𝑢𝑟 , 𝑢𝜃 , 𝑢𝜙 velocity components in spherical coordinates 𝐿/𝑇

𝜆 bulk viscosity of a Newtonian fluid 𝑀/(𝐿𝑇)
𝜇 dynamic viscosity of a Newtonian fluid 𝑀/(𝐿𝑇)
𝜈 kinematic viscosity of a Newtonian fluid 𝐿2/𝑇
𝜌 fluid density 𝑀/𝐿3

I = 𝛿𝑖 𝑗 identity tensor 1
𝛿𝑖 𝑗 Kronecker delta 1
𝜀𝑖 𝑗𝑘 Levi–Civita symbol (alternating tensor) 1
𝝈, 𝜎𝑖 𝑗 Cauchy stress tensor 𝑀/(𝐿𝑇2)
d, 𝑑𝑖 𝑗 deviatoric stress tensor 𝑀/(𝐿𝑇2)
e = 𝑒𝑖 𝑗 strain-rate tensor 1/𝑇
𝝉, 𝜏𝑖 𝑗 shear stress tensor 𝑀/(𝐿𝑇2)
𝑝 pressure 𝑀/(𝐿𝑇2)

f , 𝑓𝑖 body force per unit mass 𝐿/𝑇2

g acceleration due to gravity 𝐿/𝑇2

𝑔 magnitude of g 𝐿/𝑇2

𝛾¤ shear rate 1/𝑇

𝑄 volumetric flow rate 𝐿3/𝑇
𝑅 flow resistance 𝑀/(𝐿4𝑇)
𝐸 Young’s modulus (linear elasticity) 𝑀/(𝐿𝑇2)

Although these notations are widely used in the literature, you should be aware that variations exist;
for example, v is sometimes used for velocity, and T for the traction (stress) vector, etc.

Usually, when writing by hand, we underline first-order tensors (vectors) once, e.g., 𝑢, and second-
order tensors twice, e.g., 𝜎. In the printed notes, tensors appear in bold, roman font. Roman font is
also used for dimensionless groups, e.g., Re rather than 𝑅𝑒.
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1 Tensors and the Constitutive Relationship of a Fluid

Our aim in this section is to write down equations that govern the mechanics of a fluid. Specifically,
we will be looking at the pressure and viscous effects, and how to capture them mathematically.

1.1 Definition of a Tensor

The stress tensor is an important concept in fluid mechanics that will be introduced in Section 1.4. In
order to understand it, we must first cover some tensor theory.

Definition of a tensor A tensor is a mathematical object whose components transform according
to specific rules under a change of coordinate system.

Example of Tensors

Velocity u, position x, pressure 𝑝, density 𝜌, and any other physical property of the fluid.

Notation for tensors A tensor, A, can be notated as a single entity, i.e. as A, or in terms of its
elements, 𝑎𝑖 𝑗𝑘ℓ.... We can write A = 𝑎𝑖 𝑗𝑘ℓ.... Note:

in general, a tensor can have any number of subscripts (“indices”), for example:

A 0th-order tensor (also called a scalar) has no subscript,

A = 𝑎, where 𝑎 is a scalar

a 1st-order tensor (also called a vector) has one subscript,

A = (𝑎𝑖), where the 𝑎𝑖 ’s are scalars

a 2nd-order tensor (also called a matrix) has two subscripts ,

A = (𝑎𝑖 𝑗), where the 𝑎𝑖 𝑗 ’s are scalars

...

each subscript ranges from 1 to the number of dimensions. Therefore in three dimensions, each
subscript takes the values 1, 2 or 3.

Examples of 0th-, 1st, and 2nd-order Tensors

0th-order tensor: fluid density (𝜌), fluid dynamic viscosity(𝜇), fluid pressure (𝑝)

1st-order tensor: (Cartesian) velocity vector

u = 𝑢𝑖 =
©­­«
𝑢

𝑣

𝑤

ª®®¬ ≡
©­­«
𝑢1
𝑢2
𝑢3

ª®®¬ , for 𝑖 ∈ {1, 2, 3}

2nd-order tensor: Cauchy stress tensor

𝝈 = 𝜎𝑖 𝑗 =
©­­«
𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

ª®®¬ , for 𝑖, 𝑗 ∈ {1, 2, 3}
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1.2 Two Special Tensors

There are two special tensors which are particularly useful for writing dot products and cross products
in tensor notation.

The Kronecker delta, 𝛿𝑖 𝑗: This is a 2nd-order tensor representing the identity matrix, I. It is
defined as

𝛿𝑖 𝑗 =

{
1 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗
. (1.1)

Comments

1. The Kronecker delta tensor exists in any dimension, representing the identity matrix

For a 2 × 2 matrix: 𝛿𝑖 𝑗 =

(
1 0
0 1

)
For a 3 × 3 matrix: 𝛿𝑖 𝑗 =

©­­«
1 0 0
0 1 0
0 0 1

ª®®¬
2. Since 𝛿𝑖 𝑗 is equivalent to the I, the following properties hold:

𝛿𝑖 𝑗𝑥 𝑗 = 𝑥𝑖 (when act on a vector, the vector does not change)
𝛿𝑖 𝑗𝑎𝑖 𝑗 =

∑
𝑎𝑖𝑖 = tr(A) (when act on a matrix, yielding the sum of diagonal elem.)

The alternating tensor, 𝜀𝑖 𝑗𝑘: This is also known as the Levi-Civita tensor, the permutation
tensor, and the antisymmetric tensor. It is a 3rd-order tensor, and it is only defined in three
dimensions (unlike the Kronecker delta). It is defined as

𝜀𝑖 𝑗𝑘 =


1 if {𝑖, 𝑗 , 𝑘} is an even permutation of {1, 2, 3}
−1 if {𝑖, 𝑗 , 𝑘} is an odd permutation of {1, 2, 3}
0 if {𝑖, 𝑗 , 𝑘} is not a permutation of {1, 2, 3}

. (1.2a)

In other words:

𝜀𝑖 𝑗𝑘 =


1 {𝑖, 𝑗 , 𝑘} = {1, 2, 3}, {2, 3, 1}, {3, 1, 2}
−1 {𝑖, 𝑗 , 𝑘} = {3, 2, 1}, {2, 1, 3}, {1, 3, 2}
0 otherwise

. (1.2b)

Figure 1.1: A graphical decomposition of the alternating tensor 𝜀𝑖 𝑗𝑘 for 𝑘 ∈ {1, 2, 3}.

Comments

1. Since this is a 3rd-order tensor it cannot be written very easily on a two-dimensional
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sheet of paper! (see Figure 1.1, where we expanded 𝑘 = 1, 2, 3 and stacked the
tensor along the 𝑘-direction.) This is one reason why tensor notation is much more
convenient when dealing with multi-dimensional quantities.

2. The alternating tensor is invariant under even permutations of its indices, and it’s
negative under odd permutations, that is

𝜀𝑖 𝑗𝑘 = 𝜀 𝑗𝑘𝑖 = 𝜀𝑘𝑖 𝑗 = −𝜀𝑖𝑘 𝑗 = −𝜀 𝑗𝑖𝑘 = −𝜀𝑘 𝑗𝑖 . (1.3)

3. One useful Levi-Civita and Kronecker delta (𝜀-𝛿) identity reads:

𝜀𝑖 𝑗𝑘𝜀𝑖ℓ𝑚 = 𝛿 𝑗ℓ𝛿𝑘𝑚 − 𝛿 𝑗𝑚𝛿𝑘ℓ . (1.4)

1.3 Tensor Operations

1.3.1 The Summation Convention

The summation convention is a convenient way of notating sums of products of terms that come up
repeatedly in tensor mathematics and vector calculus. The rules of the summation convention are as
follows:

1. A repeated index in a term of the expression is called a dummy index. All dummy indices are
summed over (the sum is from 1 to 3 in three dimensions and from 1 to 2 in two dimensions).

2. No index can appear more than twice in a given term. Thus all dummy indices appear exactly
two times in a term.

3. Indices that appear once are called free indices. The set of free indices in each term of an
expression must be identical.

Example 1: Using tensor summation convention

For vectors a = (𝑎1, 𝑎2, 𝑎3)> and b = (𝑏1, 𝑏2, 𝑏3)>, the dot product between a and b is

a · b = 𝑎1𝑏1 + 𝑎2𝑏2 + 𝑎3𝑏3 =
3∑
𝑖=1

𝑎𝑖𝑏𝑖 = 𝑎𝑖𝑏𝑖

Here, 𝑎𝑖𝑏𝑖 is the summation convention; 𝑖 ∈ {1, 2, 3} is a dummy index because it appears twice
in the same term.

Example 2: Using tensor summation convention

For a tensor operation defined using the summation convention 𝑎𝑖 𝑗𝑘𝑏 𝑗𝑐𝑘ℓ + 𝑑𝑖ℓ (where
𝑖, 𝑗 , 𝑘, ℓ ∈ {1, 2, 3}), we say 𝑖 and ℓ are free indices, 𝑗 and 𝑘 are dummy indices.

By expanding the summation convention, and annotated as follows:

step Â︷                           ︸︸                           ︷( 3∑
𝑘=1

3∑
𝑗=1

𝑎𝑖 𝑗𝑘𝑏 𝑗︸      ︷︷      ︸
step À

𝑐𝑘ℓ

)
︸                    ︷︷                    ︸

step Á

+𝑑𝑖ℓ .
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step À: Compute 𝑎𝑖 𝑗𝑘 · 𝑏 𝑗 , the dummy index is 𝑗 . This step eliminates the dimension 𝑗 ,
which results in a product of the dimension (𝑖 × 𝑘).

step Á: Compute the dot product between the result from step À and 𝑐𝑘ℓ . The dummy
index is 𝑘. This step results in a product of the dimension (𝑖×ℓ), since (𝑖×𝑘)·(𝑘×ℓ) → (𝑖×ℓ).

step Â: Perform summation between two tensors of the same dimension (𝑖 × ℓ).

Over the operation, 𝑖 and ℓ can freely range from 1 to 3, hence they are the free indices.

1.3.2 Tensor Operations in Linear Algebra

Inner Product The inner product of tensors is defined through index contraction. This operation
reduces the order of tensors by summing over a common index.

For two vectors a, b ∈ R𝑛, the inner product is defined as

a · b =
𝑛∑
𝑖=1

𝑎𝑖𝑏𝑖 = 𝑎𝑖𝑏𝑖 , (1.5)

which produces a scalar (0th-order tensor).

More generally, contraction may be used to combine tensors of different orders. For example, multi-
plying a second-order tensor (matrix) A by a vector x yields a vector,

(Ax)𝑖 = 𝐴𝑖 𝑗𝑥 𝑗 . (1.6)

Example

Let A = (𝑎𝑖 𝑗) and x = (𝑥𝑖). Then

Ax =
©­­«
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

ª®®¬
©­­«
𝑥1
𝑥2
𝑥3

ª®®¬ =
©­­«
𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3
𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3
𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3

ª®®¬ =
©­­­«
∑3

𝑗=1 𝑎1 𝑗𝑥 𝑗∑3
𝑗=1 𝑎2 𝑗𝑥 𝑗∑3
𝑗=1 𝑎3 𝑗𝑥 𝑗

ª®®®¬
Using the summation convention, the above can be abbreviated as:

Ax =
3∑
𝑗=1

𝑎𝑖 𝑗𝑥 𝑗 = 𝑎𝑖 𝑗𝑥 𝑗 .

Outer Product The outer product, also known as the dyadic product, combines two tensors with-
out contraction and therefore increases the tensor order.

For two vectors a, b ∈ R𝑛, the outer product is defined as

(a ⊗ b)𝑖 𝑗 = 𝑎𝑖𝑏 𝑗 . (1.7)

The result is a second-order tensor (matrix). Unlike the dot product, no summation is implied.
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Example

For vectors a = (𝑎1, 𝑎2, 𝑎3)> and b = (𝑏1, 𝑏2, 𝑏3)>, the dyadic product is

a ⊗ b =
©­­«
𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

ª®®¬ .
The outer product is frequently used to construct tensors from vector bases. For example, a 2nd-order
tensor A may be expressed as

A = 𝐴𝑖 𝑗 ê𝑖 ⊗ ê 𝑗 , (1.8)

where {ê𝑖} is an orthonormal basis.

Cross Product The cross products of tensors: involves the use of the alternating tensor

(a × b)𝑖 = 𝜀𝑖 𝑗𝑘𝑎 𝑗𝑏𝑘 . (1.9)

Example

Using tensor cross product rule to prove a × (b × c) = (a · c) b − (a · b) c.

a × (b × c) =
(
𝜀𝑖 𝑗𝑘 𝑎 𝑗 (b × c)𝑘

)
=

(
𝜀𝑖 𝑗𝑘 𝑎 𝑗 𝜀𝑘ℓ𝑚 𝑏ℓ 𝑐𝑚

)
= ( 𝜀𝑘𝑖 𝑗 𝜀𝑘ℓ𝑚︸     ︷︷     ︸

since 𝜀𝑘𝑖 𝑗=𝜀𝑖 𝑗𝑘

𝑎 𝑗 𝑏ℓ 𝑐𝑚)

= [
(
𝛿𝑖ℓ𝛿 𝑗𝑚 − 𝛿𝑖𝑚𝛿 𝑗ℓ

)︸                 ︷︷                 ︸
by 𝜀-𝛿 identity

𝑎 𝑗 𝑏ℓ 𝑐𝑚]

=
(
𝑎 𝑗𝑏𝑖𝑐 𝑗 − 𝑎 𝑗𝑏 𝑗𝑐𝑖

)
= (a · c) b − (a · b) c ✓

1.3.3 Differential Operators in Index Notation

The gradient of a scalar field 𝜙(x) produces a vector:

(∇𝜙)𝑖 =
𝜕𝜙

𝜕𝑥𝑖
. (1.10)

The gradient of a vector field f (x) produces a matrix (“Jacobian matrix”):

(∇f )𝑖 𝑗 =
𝜕 𝑓𝑖
𝜕𝑥 𝑗

. (1.11)

The divergence of a vector field f (x) produces a scalar:

∇ · f =
𝜕 𝑓𝑖
𝜕𝑥𝑖

. (1.12)

The divergence of a 2nd-order tensor A produces a vector:

(∇ · A)𝑖 =
𝜕𝐴𝑖 𝑗

𝜕𝑥 𝑗
. (1.13)
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The curl of a vector field f (x) can be written using the alternating tensor

(∇ × f )𝑖 = 𝜀𝑖 𝑗𝑘
𝜕 𝑓𝑘
𝜕𝑥 𝑗

. (1.14)

Comments

There are several identities in vector calculus that can be proved using these special tensors,
for example

∇ × (∇𝜙) = 0,
∇ × (∇ × f ) = ∇ (∇ · f ) − ∇2f ,
∇ × (a × b) = (∇ · b) a + (b · ∇) a − (∇ · a) b − (a · ∇) b,
∇ · (∇ × f ) = 0.

You should be able to prove/verify these identities in tensor notation.

9



1.4 The Stress Tensor

Cauchy showed that the state of stress at a point in a continuum body is completely defined by a
2nd-order tensor, namely, the Cauchy stress tensor1, 𝝈 = 𝜎𝑖 𝑗 , which has 9 scalar components:

𝜎𝑖 𝑗 =
©­­«
𝜎11 𝜎12 𝜎13
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

ª®®¬ . (1.15)

However, the stress (force per unit area) itself is a vector (1st-order tensor) defined on a fluid element’s
surface. This stress vector is known as the traction, denoted by t = 𝑡𝑖 and expressed as follows:

(in tensor notation) 𝑡𝑖 = 𝜎𝑖 𝑗𝑛 𝑗 ,

(in vector notation) t = 𝝈n,
(1.16)

where n = 𝑛 𝑗 is the unit normal vector to the surface.

Thus, we can interpret the physical meaning of the stress tensor component 𝜎𝑖 𝑗 as “the 𝑖th component
of the traction vector acting on the surface with its unit normal vector e 𝑗”. For example:

𝜎12 denotes the force in the 𝑥1-direction acting on a surface with a normal in the 𝑥2-direction.
This component represents a shear stress.

𝜎33 denotes the force in the 𝑥3-direction acting on a surface with a normal in the 𝑥3-direction.
This component represents a normal stress.

Comments

The traction t is the force per unit area exerted by the fluid on the right-hand side of the
small imaginary surface d𝑆 shown in the figure below, upon the fluid on the left-hand side
of d𝑆.

n

𝑑𝑆

The stresses acting on opposite sides of a surface (i.e. on the surfaces with normals n and
−n) are equal and opposite. This is required for linear equilibrium within the fluid.

The stress tensor is symmetric, i.e. 𝜎𝑖 𝑗 = 𝜎𝑗𝑖. This is required for rotational equilibrium
within the fluid, and can be derived from the principle of conservation of angular momen-
tum.

The elements on the principal diagonal of the stress tensor matrix are called the normal
stresses. The other six elements are called the shear stresses.

1named after Augustin-Louis Cauchy (1789-1857).

10



x

y

z

σzz

σxx

σyy

�xy

�xz

�yx

�yz

fluid element

Finally, note that these force calculations assume the components of the stress tensor are
uniformly distributed over the faces of the fluid element, which is often idealised as an
infinitesimal unit cube, as shown above.

Normal Stress We can decompose the stress tensor 𝝈 into diagonal elements and off-diagonal
elements. The diagonal elements, 𝜎𝑖𝑖, are known as the normal stresses, and their mean defines the
hydrostatic pressure:

𝑝 = −1
3
tr (𝝈) = −1

3
𝜎𝑖𝑖 . (1.17)

This equation gives us a method by which we can (at least in our imagination) think about measuring
the pressure at a particular point in the fluid. We consider three small, mutually orthogonal planes
passing through the point (aligned perpendicular to the 𝑥, 𝑦 and 𝑧 directions) and measure the three
forces on the three surfaces. Dividing each force by the area of the respective plane leads to the
stresses on the surfaces, which are, respectively,

©­­«
𝜎11
𝜎21
𝜎31

ª®®¬ ,
©­­«
𝜎12
𝜎22
𝜎32

ª®®¬ , and
©­­«
𝜎13
𝜎23
𝜎33

ª®®¬ .
The normal components of the respective stresses are 𝜎11, 𝜎22 and 𝜎33, and hence the pressure is
the average of the three normal components of the stresses. The interpretation of the pressure is
different for compressible and incompressible fluids:

Compressible fluids: From classical thermodynamics, it is known that we can define the pres-
sure of the fluid as a parameter of state, making use of an equation of state (for example,
𝑝 = 𝜌𝑅𝑇 for an ideal gas).

Incompressible fluids: For an incompressible fluid the pressure 𝑝 is an independent, purely
dynamical, variable.

Deviatoric Stress Deviatoric stress is the traceless part of the stress tensor 𝝈 (Note: the deviatoric
stress is NOT simply the off-diagonal elements in 𝝈, but includes both diagonal and shear compo-
nents.) The deviatoric stresses arise from the fluid motion, hence they are actually the shear stresses
on each fluid particle. By Equation (1.17), we know

𝜎𝑖 𝑗 = −𝑝𝛿𝑖 𝑗 + 𝑑𝑖 𝑗 , (1.18)

where d = 𝑑𝑖 𝑗 is called the deviatoric stress tensor. In a fluid at rest, we have 𝑑𝑖 𝑗 = 0, and thus
𝜎𝑖 𝑗 = −𝑝𝛿𝑖 𝑗 (hydrostatic stresses only), so in this case 𝝈 is a multiple of the identity matrix.

11



1.5 The Constitutive Relationship of Newtonian Fluid

The constitutive relationship is an equation that describes the relationship between the stress ten-
sor and the kinematic state of the fluid. It is found from experiments and governs the mechanical
behaviour of the fluid, that is the rheology of the fluid. Together with the equations of mass and mo-
mentum conservation, this closes the problem for the velocity and pressure fields. Every fluid obeying
the continuum approximation has a constitutive relationship, which can be thought of as a definition
of its mechanical properties.

We can now formulate a definition of a Newtonian fluid by stating its constitutive relationship. The

deviatoric part of the stress tensor, d, is a linear function of the 9 velocity gradients, ∇u =

(
𝜕𝑢 𝑗

𝜕𝑥𝑖

)
, for

𝑖, 𝑗 ∈ {1, 2, 3}. This implies
𝑑𝑖 𝑗 = C𝑖 𝑗𝑘ℓ

𝜕𝑢ℓ
𝜕𝑥𝑘

,

for some unknown scalars in the 4th-order tensor C𝑖 𝑗𝑘ℓ .

We shall now explore C𝑖 𝑗𝑘ℓ . There are 4 free indices in C𝑖 𝑗𝑘ℓ , where 𝑖, 𝑗 , 𝑘, ℓ ∈ {1, 2, 3} → there are
34 = 81 independent coefficients! However, we can simplify these coefficients, reducing them from 81
to 2.

The fluid is homogeneous, i.e., 𝝈 does not depend explicitly on x, C𝑖 𝑗𝑘ℓ ’s are constant in space.

By minor symmetry: C𝑖 𝑗𝑘ℓ = C𝑗𝑖𝑘ℓ and C𝑖 𝑗𝑘ℓ = C𝑖 𝑗ℓ𝑘 , which reduces the number of independent
constants from 81 to 36.

By major symmetry: C𝑖 𝑗𝑘ℓ = C𝑘ℓ𝑖 𝑗 , which reduces the number of independent material constants
from 36 to 21.

By fluid isotropy: fluid behaves the same in any direction, C𝑖 𝑗𝑘ℓ remains invariant under rotations,
which reduces the number of independent material constants from 21 to 2; Namely, 𝜆 and 𝜇.
Therefore, the stress tensor

(in tensor notation) 𝜎𝑖 𝑗 = −𝑝𝛿𝑖 𝑗 + 𝜆𝛿𝑖 𝑗
𝜕𝑢𝑘
𝜕𝑥𝑘

+ 𝜇
(
𝜕𝑢 𝑗

𝜕𝑥𝑖
+ 𝜕𝑢𝑖
𝜕𝑥 𝑗

)
,

(in vector notation) 𝝈 = −𝑝I + 𝜆 (∇ · u) I + 2𝜇e,
(1.19)

where 𝜆 is the bulk viscosity of the fluid and 𝜇 is the dynamic shear viscosity.

In Equation 1.19, e = 𝑒𝑖 𝑗 is the strain rate tensor, given by

(in tensor notation) 𝑒𝑖 𝑗 =
1
2

(
𝜕𝑢 𝑗

𝜕𝑥𝑖
+ 𝜕𝑢𝑖
𝜕𝑥 𝑗

)
,

(in vector notation) e =
1
2

(
∇u + (∇u)>

)
.

(1.20)

We can also write e as a full matrix:

In Cartesian coordinates

e =

©­­­­­­­­­«

𝜕𝑢

𝜕𝑥

1
2

(
𝜕𝑢

𝜕𝑦
+ 𝜕𝑣
𝜕𝑥

)
1
2

(
𝜕𝑢

𝜕𝑧
+ 𝜕𝑤
𝜕𝑥

)
1
2

(
𝜕𝑢

𝜕𝑦
+ 𝜕𝑣
𝜕𝑥

)
𝜕𝑣

𝜕𝑦

1
2

(
𝜕𝑣

𝜕𝑧
+ 𝜕𝑤
𝜕𝑦

)
1
2

(
𝜕𝑢

𝜕𝑧
+ 𝜕𝑤
𝜕𝑥

)
1
2

(
𝜕𝑣

𝜕𝑧
+ 𝜕𝑤
𝜕𝑦

)
𝜕𝑤

𝜕𝑧

ª®®®®®®®®®¬
(1.21)
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In cylindrical polar coordinates

e =

©­­­­­­­­­«

𝜕𝑢𝑟
𝜕𝑟

1
2

(
𝑟
𝜕 (𝑢𝜃/𝑟)
𝜕𝑟

+ 1
𝑟

𝜕𝑢𝑟
𝜕𝜃

)
1
2

(
𝜕𝑢𝑧
𝜕𝑟

+ 𝜕𝑢𝑟
𝜕𝑧

)
1
2

(
𝑟
𝜕 (𝑢𝜃/𝑟)
𝜕𝑟

+ 1
𝑟

𝜕𝑢𝑟
𝜕𝜃

)
1
𝑟

𝜕𝑢𝜃
𝜕𝜃

+ 𝑢𝑟
𝑟

1
2

(
𝜕𝑢𝜃
𝜕𝑧

+ 1
𝑟

𝜕𝑢𝑧
𝜕𝜃

)
1
2

(
𝜕𝑢𝑧
𝜕𝑟

+ 𝜕𝑢𝑟
𝜕𝑧

)
1
2

(
𝜕𝑢𝜃
𝜕𝑧

+ 1
𝑟

𝜕𝑢𝑧
𝜕𝜃

)
𝜕𝑢𝑧
𝜕𝑧

ª®®®®®®®®®¬
, (1.22)

In spherical polar coordinates

e =

©­­­­­­­­­«

𝜕𝑢𝑟
𝜕𝑟

1
2

(
𝑟
𝜕 (𝑢𝜃/𝑟)
𝜕𝑟

+ 1
𝑟

𝜕𝑢𝑟
𝜕𝜃

)
1
2

(
𝑟
𝜕 (𝑢𝜙/𝑟)
𝜕𝑟

+ 1
𝑟 sin 𝜃

𝜕𝑢𝑟
𝜕𝜙

)
1
2

(
𝑟
𝜕 (𝑢𝜃/𝑟)
𝜕𝑟

+ 1
𝑟

𝜕𝑢𝑟
𝜕𝜃

)
1
𝑟

𝜕𝑢𝜃
𝜕𝜃

+ 𝑢𝑟
𝑟

1
2

(
1

𝑟 sin 𝜃
𝜕𝑢𝜃
𝜕𝜙

+ sin 𝜃
𝑟

𝜕 (𝑢𝜙/sin 𝜃)
𝜕𝜃

)
1
2

(
𝑟
𝜕 (𝑢𝜙/𝑟)
𝜕𝑟

+ 1
𝑟 sin 𝜃

𝜕𝑢𝑟
𝜕𝜙

)
1
2

(
1

𝑟 sin 𝜃
𝜕𝑢𝜃
𝜕𝜙

+ sin 𝜃
𝑟

𝜕 (𝑢𝜙/sin 𝜃)
𝜕𝜃

)
1

𝑟 sin 𝜃
𝜕𝑢𝜙

𝜕𝜙
+ 𝑢𝑟 + 𝑢𝜃 cot 𝜃

𝑟

ª®®®®®®®®®¬
.

(1.23)

Comments

For an incompressible fluid, the bulk viscosity 𝜆 does not contribute due to the mass con-
servation. In this case, the stress tensor

(in vector notation) 𝝈 = −𝑝I + 2𝜇e,

(in tensor notation) 𝜎𝑖 𝑗 = −𝑝𝛿𝑖 𝑗 + 2𝜇𝑒𝑖 𝑗 = −𝑝𝛿𝑖 𝑗 + 𝜇
(
𝜕𝑢 𝑗

𝜕𝑥𝑖
+ 𝜕𝑢𝑖
𝜕𝑥 𝑗

)
.

(1.24)

In Cartesian coordinates, let 𝑢1 = 𝑢, 𝑢2 = 𝑣, 𝑢3 = 𝑤, the matrix form of 𝝈 is given by

𝝈 =

©­­­­­­­­­«

−𝑝 + 2𝜇𝜕𝑢
𝜕𝑥

𝜇

(
𝜕𝑢

𝜕𝑦
+ 𝜕𝑣
𝜕𝑥

)
𝜇

(
𝜕𝑢

𝜕𝑧
+ 𝜕𝑤
𝜕𝑥

)
𝜇

(
𝜕𝑢

𝜕𝑦
+ 𝜕𝑣
𝜕𝑥

)
−𝑝 + 2𝜇 𝜕𝑣

𝜕𝑦
𝜇

(
𝜕𝑣

𝜕𝑧
+ 𝜕𝑤
𝜕𝑦

)
𝜇

(
𝜕𝑢

𝜕𝑧
+ 𝜕𝑤
𝜕𝑥

)
𝜇

(
𝜕𝑣

𝜕𝑧
+ 𝜕𝑤
𝜕𝑦

)
−𝑝 + 2𝜇𝜕𝑤

𝜕𝑧

ª®®®®®®®®®¬
(1.25)

Since we often consider incompressible Newtonian fluids, for which there is only one vis-
cosity parameter, 𝜇, it is common to refer to the dynamic viscosity, or just viscosity.

Sometimes, it is more convenient to define the kinematic viscosity: 𝜈 =
𝜇

𝜌
.

Normal stresses: From Equation 1.25, the normal stresses are the diagonal elements in
𝝈:

𝜎normal = −𝑝 + 2𝜇𝜕𝑢𝑖
𝜕𝑥𝑖

.

However, if the fluid is incompressible, by the conservation of mass (continuity),
𝜕𝑢

𝜕𝑥
+ 𝜕𝑣
𝜕𝑦

+
𝜕𝑤

𝜕𝑧
= 0; Therefore, we can simplify the normal stresses to 𝜎normal = −𝑝.
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Shear stresses: From Equation 1.25, the shear stresses are the off-diagonal elements in
𝝈:

𝜎shear = 𝜏𝑖 𝑗 = 𝜇

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+
𝜕𝑢 𝑗

𝜕𝑥𝑖

)
.

Under scenarios/assumptions e.g. 2-D flow, or flow is fully developed in a certain direction,
we can further simplify the expression of the shear stresses.

Inviscid fluids: An incompressible fluid is said to be inviscid if 𝜇 = 0. The constitutive
law (1.24) becomes

(in vector notation) 𝝈 = −𝑝I,
(in tensor notation) 𝜎𝑖 𝑗 = −𝑝𝛿𝑖 𝑗 ,

(1.26)

and thus the stress in the fluid is not affected by the fluid motion. There are no truly inviscid
fluids in nature, but in certain cases, it is appropriate to approximate by an inviscid fluid,
for example for a fast-flowing, low-viscosity fluid.

(a) (b)

Figure 1.2: The velocity profile of flow between two parallel plates when the fluid is (a) affected
by viscosity, (b) inviscid.
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1.6 Non-Newtonian Fluids

Some fluids exhibit significant non-Newtonian qualities, as reflected in their constitutive relationship,
which describes them. Some categories of non-Newtonian fluids:

Non-constant viscosity: the viscosity varies with the shear stress 𝜏 [Pa] and shear rate 𝛾¤
[1/s]. The viscosity 𝜇 = 𝛿𝜏/𝛿𝛾¤ .

Figure 1.3: Left: the concept of shear strain 𝛾 in a simple shear flow; Right: the rheological behaviour
of viscous fluids can be classified by the shear stress - shear rate (𝛾¤ = d𝛾/d𝑡) relations.

Shear thickening: 𝜇 increases with shear rate - e.g., cornstarch paste;
Shear thinning: 𝜇 decreases with shear rate - e.g., ketchup, blood;
Bingham plastic: a yield stress 𝜏𝑦 impedes the fluid flow until 𝜏 > 𝜏𝑦.

Viscoelastic fluids: These fluids have a memory, and in this case, the formula for the deviatoric
part of the stress tensor involves an integral over the previous states of the fluid.

Anisotropic fluids: These are fluids that have different properties in different directions. A
physiological example of this is blood, which contains red blood cells. When the blood is flowing
the cells align, meaning the effective viscosity is much less in the direction of flow and more in
the transverse direction.

Blood Although the blood is frequently modelled as a Newtonian fluid, it exhibits shear-thinning be-
haviours. The non-Newtonian behaviours of blood are due to the cell suspension (rather than the
plasma), hence, the viscosity is hematocrit dependent.

The blood viscosity can be modelled by the non-Newtonian Carreau-Yasuda model: the effective
(apparent) viscosity 𝜇eff is expressed as a function of shear rate 𝛾¤ (see plot below):

𝜇eff (𝛾¤ ) = 𝜇∞ + (𝜇0 − 𝜇∞) [1 + (𝑘𝛾¤ )𝑎] 𝑛−1
𝑎 ,

where

𝜇0 is the zero-shear viscosity,

𝜇∞ is the high-shear viscosity,

𝑘 is the characteristic time constant,

𝛾¤ is the shear rate,

𝑛, 𝑎 are constants (“power-law index”
and “Yasuda exponent”).

shear thinning 

effects
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1.7 Examples

We can find the stress 𝝉 (the force per unit area experienced by the fluid) on a surface with unit normal
vector n using the formula (1.16), which states

t(n) = 𝝈n.

Example: Shear flow

Consider an incompressible Newtonian fluid flowing in 𝑦 ≥ 0 in Cartesian coordinates (𝑥, 𝑦, 𝑧)
in a uniform pressure field 𝑝 = 𝑝0 with 𝑝0 constant, and whose velocity components are re-
spectively given by

𝑢 = 𝑘𝑦, 𝑣 = 0, 𝑤 = 0,

(it may be shown these satisfy the Navier-Stokes and continuity equations). Find the stress
tensor at a general location. Hence find the stress at a general location on an imaginary surface
with unit normal vector n = (𝑛𝑥 , 𝑛𝑦). In this question, you may neglect gravity.

𝑦

𝑥

Answer: The stress tensor is given by

𝝈 = −𝑝I + 2𝜇e,

where the rate-of-strain tensor e is given by

e =
©­­­«

𝜕𝑢

𝜕𝑥

1
2

(
𝜕𝑢

𝜕𝑦
+ 𝜕𝑣
𝜕𝑥

)
1
2

(
𝜕𝑢

𝜕𝑦
+ 𝜕𝑣
𝜕𝑥

)
𝜕𝑣

𝜕𝑦

ª®®®¬ =

(
0 𝑘/2
𝑘/2 0

)
.

Hence the stress tensor 𝝈 is given by

𝝈 = −𝑝I + 2𝜇e =

(
−𝑝0 𝑘𝜇

𝑘𝜇 −𝑝0

)
.

Thus for a general unit vector

𝝉 = 𝝈n =

(
−𝑝0 𝑘𝜇

𝑘𝜇 −𝑝0

) (
𝑛𝑥
𝑛𝑦

)
=

(
−𝑝0𝑛𝑥 + 𝑘𝜇𝑛𝑦
𝑘𝜇𝑛𝑥 − 𝑝0𝑛𝑦

)
.

Comments:

For example with n = j, we have t = (𝑘𝜇,−𝑝0). This makes sense as there is a back-
ground pressure 𝑝0 pressing into the surface and a stress 𝑘𝜇 arising from the shear flow
and running along the surface.

Likewise, if n = i, we have t = (−𝑝0, 𝑘𝜇). This formula cannot be compared with the
formula from Mechanics 2 Fluids as it would not be possible to put in a rigid surface with
normal n = i without changing the flow.
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Example: Poiseuille flow

Consider Poiseuille flow in a circular cylinder with velocity components

𝑢𝑟 = 0, 𝑢𝜃 = 0, 𝑢𝑧 =
𝐺

4𝜇

(
𝑎2 − 𝑟2

)
,

where 𝐺 = −𝜕𝑝/𝜕𝑧 is the axial pressure gradient. Find the stress tensor at a general point and
comment on it.

Answer: We have the strain rate tensor given by (1.22) as

e =

©­­­­­­­­«

𝜕𝑢𝑟
𝜕𝑟

1
2

(
𝑟
𝜕 (𝑢𝜃/𝑟)
𝜕𝑟

+ 1
𝑟

𝜕𝑢𝑟
𝜕𝜃

)
1
2

(
𝜕𝑢𝑧
𝜕𝑟

+ 𝜕𝑢𝑟
𝜕𝑧

)
1
2

(
𝑟
𝜕 (𝑢𝜃/𝑟)
𝜕𝑟

+ 1
𝑟

𝜕𝑢𝑟
𝜕𝜃

)
1
𝑟

𝜕𝑢𝜃
𝜕𝜃

+ 𝑢𝑟
𝑟

1
2

(
𝜕𝑢𝜃
𝜕𝑧

+ 1
𝑟

𝜕𝑢𝑧
𝜕𝜃

)
1
2

(
𝜕𝑢𝑧
𝜕𝑟

+ 𝜕𝑢𝑟
𝜕𝑧

)
1
2

(
𝜕𝑢𝜃
𝜕𝑧

+ 1
𝑟

𝜕𝑢𝑧
𝜕𝜃

)
𝜕𝑢𝑧
𝜕𝑧

ª®®®®®®®®¬
=

©­­­­­«
0 0 −𝐺𝑟

4𝜇
0 0 0

−𝐺𝑟
4𝜇

0 0

ª®®®®®¬
,

and hence

𝝈 = −𝑝I + 2𝜇e =

©­­­­«
−𝑝 0 −1

2
𝐺𝑟

0 −𝑝 0

−1
2
𝐺𝑟 0 −𝑝

ª®®®®¬
.

Incompressibility requires 𝐺 to be constant, and hence 𝑝 = 𝑝0 − 𝐺𝑧, where 𝑝0 is a constant,
and giving

𝝈 =

©­­­­«
−𝑝0 + 𝐺𝑧 0 −1

2
𝐺𝑟

0 −𝑝0 + 𝐺𝑧 0

−1
2
𝐺𝑟 0 −𝑝0 + 𝐺𝑧

ª®®®®¬
.

Hence for imaginary surfaces with normal vectors r̂, 𝜽, ẑ, respectively, the stress on the surface
is given by

t𝑟 =𝝈r̂ = (Gz − p0) r̂ − 1
2

Grẑ,

t𝜃 =𝝈𝜽 = (𝐺𝑧 − 𝑝0) 𝜽 ,

t𝑧 =𝝈ẑ = (Gz − p0) ẑ − 1
2Grr̂.

It is not possible to compare these formulae with the one given in Mechanics 2 Fluids, because
a rigid surface with the given normal vectors could not be put in, except for the case when we
find the stress at the wall (𝑟 = 𝑎) by setting the normal vector is n = −r̂, which gives

t = −𝝈r̂ = (p0 − Gz) r̂ + 1
2

Gaẑ,

that is a normal stress equal to minus the pressure and an axial shear stress 𝐺𝑎/2 (which is
−𝜇 𝜕𝑢𝑧/𝜕𝑟, as expected).
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2 The Differential Equations Governing Fluid Motion

2.1 Reynolds Transport Theorem

The continuity and the Navier-Stokes equation are derived from the Reynolds transport theorem
(RTT). RTT relates the rate of change of a conserved quantity (denoted by 𝐵), in a closed system,
to its rate of change within a control volume (CV) and its flux across the control surface (CS). RTT
states ©­«

Rate of change
of 𝐵 in the
system

ª®¬ = ©­«
Rate of change
of 𝐵 in control

volume

ª®¬ + ©­«
Net flux of 𝐵 out
of control volume
via the surface

ª®¬ .
Mathematically,

d𝐵system

d𝑡
=
𝜕

𝜕𝑡

∫
CV

𝜌𝛽 d𝑉 +
∮
CS

𝜌𝛽(u · n) d𝐴 (2.1)

where 𝛽 = d𝐵/d𝑚 is the amount of 𝐵 per unit mass.

For conservation of mass (continuity): 𝐵 is the mass 𝑚, 𝛽 = d𝑚/d𝑚 = 1;

For conservation of linear momentum (Navier-Stokes): 𝐵 is the linear momentum P = 𝑚u,
𝛽 = dP/d𝑚 = u.

Detailed derivations of the continuity and Navier-Stokes equations from RTT are provided in Ap-
pendix A.

2.2 Conservation of Mass

Using the fact that mass cannot be created or destroyed in a small control volume, and letting the
size of the control volume tend to zero, we obtain

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌u) = 0. (2.2)

Incompressible fluids This is a fluid whose density 𝜌(x, 𝑡) is constant.

Many liquids are approximately incompressible.

The assumption of incompressibility is good for many physiological fluid flows.

For an incompressible fluid, the principle of mass conservation is equivalent to

∇ · u = 0, (2.3)

which is the continuity equation.
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2.3 Conservation of Momentum

We use Newton’s second law, which states that the rate of change of momentum of a body equals
the force acting on it, and consider rates of momentum change in a small control volume. The forces
arising are due to the stress and any body forces acting on the fluid. Letting the size of the control
volume tend to zero, we obtain Cauchy’s equation,

(in tensor notation) 𝜌

(
𝜕𝑢𝑖
𝜕𝑡

+ 𝑢 𝑗
𝜕𝑢𝑖
𝜕𝑥 𝑗

)
=
𝜕𝜎𝑖 𝑗

𝜕𝑥 𝑗
+ 𝜌 𝑓𝑖

(in vector notation) 𝜌

(
𝜕u
𝜕𝑡

+ (u · ∇)u
)
= ∇ · 𝝈 + 𝜌f

(2.4)

where f is the body force per unit mass and 𝝈 is the Cauchy stress tensor. The equation can be
simplified by replacing the left-hand side with the material derivative,

𝐷 (∗)
𝐷𝑡

=
𝜕 (∗)
𝜕𝑡

+ (u · ∇)(∗) =
𝜕 (∗)
𝜕𝑡

+ 𝑢 𝑗
𝜕 (∗)
𝜕𝑥 𝑗

. (2.5)

Comments

The material derivative seamlessly bridges the Lagrangian description (L.H.S. of Equa-
tion 2.5) and the Eulerian description (R.H.S. of Equation 2.5) of the fluid motion.

Lagrangian description: keeps track of individual particles as they move through space;
“go with the flow”.

Eulerian description: observe the rate of change of a property at fixed spatial locations.

Lagrangian Eulerian

t

t + t 

fix in space

Substituting Equation 2.5 into Equation 2.4

(in tensor notation) 𝜌
𝐷𝑢𝑖
𝐷𝑡

=
𝜕𝜎𝑖 𝑗

𝜕𝑥 𝑗
+ 𝜌 𝑓𝑖

(in vector notation) 𝜌
𝐷u
𝐷𝑡

= ∇ · 𝝈 + 𝜌f .

(2.6)

In each of Equations (2.4) and (2.6), the left-hand side contains terms arising from the momentum
balance, whilst the right-hand side equals the force per unit volume.

Decomposing the stress into the contributions from the pressure and the deviatoric part: 𝝈 = −𝑝I+2𝜇e
(Equation 1.24), and if the fluid is Newtonian (constant 𝜇, hence separable from the derivatives),

(in tensor notation) 𝜌
𝐷𝑢𝑖
𝐷𝑡

= − 𝜕𝑝
𝜕𝑥𝑖

+ 𝜇 𝜕2𝑢𝑖
𝜕𝑥 𝑗𝜕𝑥 𝑗

+ 𝜌 𝑓𝑖

(in vector notation) 𝜌
𝐷u
𝐷𝑡

= −∇𝑝 + 𝜇∇2u + 𝜌f ,

(2.7)
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which yields the celebrated Navier-Stokes (N-S)2 equation.

For Equation 2.7, it is frequently convenient to divide both sides by the density 𝜌 to obtain

(in tensor notation)
𝐷𝑢𝑖
𝐷𝑡

= − 1
𝜌

𝜕𝑝

𝜕𝑥𝑖
+ 𝜈 𝜕2𝑢𝑖

𝜕𝑥 𝑗𝜕𝑥 𝑗
+ 𝑓𝑖

(in vector notation)
𝐷u
𝐷𝑡

= − 1
𝜌
∇𝑝 + 𝜈∇2u + f ,

(2.8)

where 𝜈 = 𝜇/𝜌 is the kinematic viscosity.

Comments

For Equation 2.8, expanding the L.H.S. (material derivative), and we may annotate

𝜕𝑢𝑖
𝜕𝑡︸︷︷︸
À

+ 𝑢 𝑗
𝜕𝑢𝑖
𝜕𝑥 𝑗︸ ︷︷ ︸
Á

= − 1
𝜌

𝜕𝑝

𝜕𝑥𝑖︸  ︷︷  ︸
Â

+ 𝜈 𝜕2𝑢𝑖
𝜕𝑥 𝑗𝜕𝑥 𝑗︸     ︷︷     ︸

Ã

+ 𝑓𝑖︸︷︷︸
Ä

À rate of change of speed (unsteady) Á convective acceleration
Â pressure gradient Ã diffusive (viscous) acceleration
Ä body force: gravitational, EM, etc.

- The equation can be viewed as 3 separate equations (in 3-D), one for each spatial com-
ponent.

- TermÀ andÁ together represent the material derivative of u, which is the total acceleration
of a fluid element.

- Term Â and Ã represent the internal forces acting on a fluid element.

- Term Ä is the external force acting on a fluid element. The most common choices for f are
f = g (if gravity is significant) and f = 0 (if gravity is unimportant).

- The N-S is non-linear due to the presence of the term Á; as a result, expansion in basis
functions (e.g., Fourier series) leads to coupled modal equations, and the principle of linear
superposition does not apply.

- There are many possible formulations of the N-S equation. The abovementioned formu-
lation assumes the fluid is incompressible (constant 𝜌) and Newtonian (constant 𝜇, hence
𝜈 = 𝜇/𝜌 is also constant).

2named after Claude-Louis Navier (1785-1836) and George Gabriel Stokes (1819-1903).

20



2.4 The Navier-Stokes Equations In Different Coordinate Frames

What do we solve? For a three-dimensional, isothermal flow regime governed by the N-S equa-
tion, the unknown quantities to fully characterise the flow fields are the velocity components u in three
directions, in addition to the pressure field 𝑝.

There are 4 unknowns, and from our experience, solving 4 unknowns typically requires 4 simulta-
neous equations. Therefore, in addition to the three Navier-Stokes equations in three orthogonal
directions, we need to solve the continuity equation as the fourth equation to obtain the deterministic
solution for u and 𝑝.

Depending on the geometry and symmetry of the problem, the governing equations may be expressed
in different coordinate systems. The most commonly used systems in fluid mechanics are the Carte-
sian, cylindrical, and spherical coordinate systems, as illustrated in Figure 2.1. An appropriate choice
of coordinate system can significantly simplify both the mathematical formulation and the analytical
or numerical solution of the governing equations.

�
�

(a) (b) (c)

Figure 2.1: Illustration of three commonly used coordinate systems: (a) Cartesian coordinates, (b)
cylindrical coordinates, and (c) spherical coordinates.

In Cartesian coordinates (𝑥, 𝑦, 𝑧)

The continuity equation:
𝜕𝑢

𝜕𝑥
+ 𝜕𝑣
𝜕𝑦

+ 𝜕𝑤
𝜕𝑧

= 0 (2.9)

The Navier-Stokes equation

𝜌

(
𝜕𝑢

𝜕𝑡
+ 𝑢 𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦
+ 𝑤𝜕𝑢

𝜕𝑧

)
= − 𝜕𝑝

𝜕𝑥
+ 𝜇

(
𝜕2𝑢

𝜕𝑥2 + 𝜕
2𝑢

𝜕𝑦2 + 𝜕
2𝑢

𝜕𝑧2

)
+ 𝜌 𝑓𝑥 , (2.10)

𝜌

(
𝜕𝑣

𝜕𝑡
+ 𝑢 𝜕𝑣

𝜕𝑥
+ 𝑣 𝜕𝑣

𝜕𝑦
+ 𝑤𝜕𝑣

𝜕𝑧

)
= − 𝜕𝑝

𝜕𝑦
+ 𝜇

(
𝜕2𝑣

𝜕𝑥2 + 𝜕
2𝑣

𝜕𝑦2 + 𝜕
2𝑣

𝜕𝑧2

)
+ 𝜌 𝑓𝑦 , (2.11)

𝜌

(
𝜕𝑤

𝜕𝑡
+ 𝑢 𝜕𝑤

𝜕𝑥
+ 𝑣 𝜕𝑤

𝜕𝑦
+ 𝑤𝜕𝑤

𝜕𝑧

)
= − 𝜕𝑝

𝜕𝑧
+ 𝜇

(
𝜕2𝑤

𝜕𝑥2 + 𝜕
2𝑤

𝜕𝑦2 + 𝜕
2𝑤

𝜕𝑧2

)
+ 𝜌 𝑓𝑧 . (2.12)

Comments

Using tensor notation, we may write 𝑢𝑖 = {𝑢1, 𝑢2, 𝑢3} and 𝑥𝑖 = {𝑥1, 𝑥2, 𝑥3}. Here, specifically within
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the Cartesian coordinates, we write 𝑢𝑖 = {𝑢, 𝑣, 𝑤} and 𝑥𝑖 = {𝑥, 𝑦, 𝑧}.

i

In cylindrical coordinates (𝑟, 𝜃, 𝑧)

The continuity equation
1
𝑟

𝜕 (𝑟𝑢𝑟 )
𝜕𝑟

+ 1
𝑟

𝜕𝑢𝜃
𝜕𝜃

+ 𝜕𝑢𝑧
𝜕𝑧

= 0, (2.13)

The Navier-Stokes equations

𝜌

(
𝜕𝑢𝑟
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟

+ 𝑢𝜃
𝑟

𝜕𝑢𝑟
𝜕𝜃

+ 𝑢𝑧
𝜕𝑢𝑟
𝜕𝑧

−
𝑢2
𝜃

𝑟

)
= −𝜕𝑝

𝜕𝑟
+ 𝜇

(
∇2𝑢𝑟 −

𝑢𝑟
𝑟2 − 2

𝑟2
𝜕𝑢𝜃
𝜕𝜃

)
+ 𝜌 𝑓𝑟 , (2.14)

𝜌

(
𝜕𝑢𝜃
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝜃
𝜕𝑟

+ 𝑢𝜃
𝑟

𝜕𝑢𝜃
𝜕𝜃

+ 𝑢𝑧
𝜕𝑢𝜃
𝜕𝑧

+ 𝑢𝑟𝑢𝜃
𝑟

)
= −1

𝑟

𝜕𝑝

𝜕𝜃
+ 𝜇

(
∇2𝑢𝜃 +

2
𝑟2
𝜕𝑢𝑟
𝜕𝜃

− 𝑢𝜃
𝑟2

)
+ 𝜌 𝑓𝜃 , (2.15)

𝜌

(
𝜕𝑢𝑧
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝑧
𝜕𝑟

+ 𝑢𝜃
𝑟

𝜕𝑢𝑧
𝜕𝜃

+ 𝑢𝑧
𝜕𝑢𝑧
𝜕𝑧

)
= −𝜕𝑝

𝜕𝑧
+ 𝜇∇2𝑢𝑧 + 𝜌 𝑓𝑧 , (2.16)

Comments

The ∇2(∗) operator is known as the ‘Laplacian’ of the function (∗). In cylindrical coordi-
nates,the Laplacian of a function 𝐴(𝑟, 𝜃, 𝑧) is given by

∇2𝐴 =
1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝐴

𝜕𝑟

)
+ 1
𝑟2
𝜕2𝐴

𝜕𝜃2 + 𝜕
2𝐴

𝜕𝑧2
. (2.17)

f = ( 𝑓𝑟 , 𝑓𝜃 , 𝑓𝑧) represents the body forces per unit mass acting on the fluid. In the case of
gravity, we set f = 𝜌g, where g = (0, 0,−𝑔) is the acceleration due to gravity.

In spherical coordinates (𝑟, 𝜃, 𝜙)

The continuity equation

1
𝑟2
𝜕 (𝑟2𝑢𝑟 )
𝜕𝑟

+ 1
𝑟 sin 𝜃

𝜕 (𝑢𝜃 sin 𝜃)
𝜕𝜃

+ 1
𝑟 sin 𝜃

𝜕𝑢𝜙

𝜕𝜙
= 0, (2.18)
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The Navier-Stokes equations

𝜌

(
𝜕𝑢𝑟
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟

+ 𝑢𝜃
𝑟

𝜕𝑢𝑟
𝜕𝜃

+
𝑢𝜙

𝑟 sin 𝜃
𝜕𝑢𝑟
𝜕𝜙

−
𝑢2
𝜙 + 𝑢2

𝜃

𝑟

)
= −𝜕𝑝

𝜕𝑟
+ 𝜇

(
∇2𝑢𝑟 −

2𝑢𝑟
𝑟2 − 2

𝑟2 sin 𝜃
𝜕

𝜕𝜃
(𝑢𝜃 sin 𝜃) + 2

𝑟2 sin 𝜃
𝜕𝑢𝜙

𝜕𝜙

)
+ 𝜌 𝑓𝑟 , (2.19)

𝜌

(
𝜕𝑢𝜃
𝜕𝑡

+ 𝑢𝑟
𝜕𝑢𝜃
𝜕𝑟

+ 𝑢𝜃
𝑟

𝜕𝑢𝜃
𝜕𝜃

+
𝑢𝜙

𝑟 sin 𝜃
𝜕𝑢𝜃
𝜕𝜙

+
𝑢𝑟𝑢𝜃 − 𝑢2

𝜙 cot 𝜃
𝑟

)
= −1

𝑟

𝜕𝑝

𝜕𝜃
+ 𝜇

(
∇2𝑢𝜃 −

𝑢𝜃

𝑟2 sin2 𝜃
+ 2
𝑟2
𝜕𝑢𝑟
𝜕𝜃

− 2 cos 𝜃
𝑟2 sin2 𝜃

𝜕𝑢𝜙

𝜕𝜙

)
+ 𝜌 𝑓𝜃 , (2.20)

𝜌

(
𝜕𝑢𝜙

𝜕𝑡
+ 𝑢𝑟

𝜕𝑢𝜙

𝜕𝑟
+ 𝑢𝜃
𝑟

𝜕𝑢𝜙

𝜕𝜃
+

𝑢𝜙

𝑟 sin 𝜃
𝜕𝑢𝜙

𝜕𝜙
+
𝑢𝑟𝑢𝜙 + 𝑢𝜙𝑢𝜃 cot 𝜃

𝑟

)
= − 1

𝑟 sin 𝜃
𝜕𝑝

𝜕𝜙
+ 𝜇

(
∇2𝑢𝜙 −

𝑢𝜙

𝑟2 sin2 𝜃
+ 2
𝑟2 sin 𝜃

𝜕𝑢𝑟
𝜕𝜙

+ 2 cos 𝜃
𝑟2 sin2 𝜃

𝜕𝑢𝜃
𝜕𝜙

)
+ 𝜌 𝑓𝜙, (2.21)

Comments

The ∇2(∗) operator is known as the ‘Laplacian’ of the function (∗). In spherical coordi-
nates,the Laplacian of a function 𝐴(𝑟, 𝜃, 𝜙) is given by

∇2𝐴 =
1
𝑟2

𝜕

𝜕𝑟

(
𝑟2 𝜕𝐴

𝜕𝑟

)
+ 1
𝑟2 sin 𝜃

𝜕

𝜕𝜃

(
sin 𝜃 𝜕𝐴

𝜕𝜃

)
+ 1
𝑟2 sin2 𝜃

𝜕2𝐴

𝜕𝜙2 . (2.22)

f = ( 𝑓𝑟 , 𝑓𝜃 , 𝑓𝜙) represents the body forces per unit mass acting on the fluid. Again in the
case of gravity we set f = 𝜌g, where g = (−𝑔 cos 𝜃, 𝑔 sin 𝜃, 0).
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2.5 Other Transport Phenomena

Transport of heat, mass, and linear momentum share similar mathematical frameworks.

Transport of ... Governing Equation “Diffusivity” “Source”

Heat
𝜕𝑇

𝜕𝑡
+ (u · ∇)𝑇 = 𝛼∇2𝑇 + 𝑆¤𝑇 𝛼 = 𝑘/𝜌𝑐𝑣 𝑆¤𝑇 = 𝑆¤ 𝑣/𝜌𝑐𝑣

Mass
𝜕𝐶

𝜕𝑡
+ (u · ∇)𝐶 = D∇2𝐶 + 𝑆¤𝐶 D 𝑆¤𝐶

Momentum (N-S)
𝜕u
𝜕𝑡

+ (u · ∇)u = 𝜈∇2u + 𝑆¤ 𝑣 𝜈 = 𝜇/𝜌 𝑆¤ 𝑣 = (−∇𝑝 + 𝜌f )/𝜌

2.5.1 Transport of Energy

We can also use the Reynolds Transport Theorem to perform the conservation of energy in a small
control volume. The energy is the sum of the internal energy, kinetic energy and the gravitational
potential energy

𝑒 = 𝑢 + 1
2
|u |2 − g · x,

where 𝑢 is the internal energy per unit mass (which is often expressed as d𝑢 ≈ 𝑐𝑣 d𝑇) and g is the
acceleration due to gravity.

In the special case that the fluid is incompressible and Newtonian and that the specific heat 𝑐𝑣 is
constant and the fluid is homogeneous and isotropic, and, upon letting the volume of the control
volume tend to zero, we obtain the energy equation:

𝜌𝑐𝑣

(
𝜕𝑇

𝜕𝑡
+ (u · ∇)𝑇

)
= 𝑘∇2𝑇 +Φ + 𝑆¤ 𝑣 , (2.23)

where

𝑐𝑣 is the specific heat at constant volume, which is the rate of change of internal energy of the
fluid with respect to temperature,

𝑇 is the temperature of the fluid,

𝑘 is the coefficient of thermal conductivity, which is the heat flux per unit area per unit temperature
gradient (by Fourier’s law, which is q = −𝑘∇𝑇 where q is the flux of heat per unit area - cf. Fick’s
law), and

Φ is the rate of heating due to viscous stresses, given by

Φ = 2𝜇𝑒𝑖 𝑗𝑒𝑖 𝑗 = 𝜇
(
2
(
𝜕𝑢

𝜕𝑥

)2
+ 2

(
𝜕𝑣

𝜕𝑦

)2
+ 2

(
𝜕𝑤

𝜕𝑧

)2
+

(
𝜕𝑣

𝜕𝑥
+ 𝜕𝑢
𝜕𝑦

)2

+
(
𝜕𝑤

𝜕𝑦
+ 𝜕𝑣
𝜕𝑧

)2
+

(
𝜕𝑢

𝜕𝑧
+ 𝜕𝑤
𝜕𝑥

)2
)
. (2.24)

𝑆¤ 𝑣 is the energy production per unit volume per unit time.
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Comments

In Equation 2.23, there is an extra term,Φ, representing the heating due to viscous stresses
in the fluid. It is the energy loss due to the viscous forces per unit volume of fluid per unit
time. Often, this term is neglected to give the usual advection-diffusion equation. In a
non-Newtonian fluid, the equation is significantly more complicated.

Divide both sides of Equation 2.23 by 𝜌𝑐𝑣, we can write
𝑘

𝜌𝑐𝑣
= 𝛼; Here, 𝛼 is commonly

called the thermal diffusivity.

The Prandtl number, Pr, is an important dimensionless number that measures the relative
importance of the viscosity to the thermal conductivity,

Pr = 𝜈/𝛼,

where 𝜈 is the kinematic viscosity.

2.5.2 Transport of Mass

The transport equation of mass is given by

𝜕𝐶

𝜕𝑡
+ (u · ∇)𝐶 = D∇2𝐶 + 𝑆¤𝐶 , (2.25)

where

𝐶 is the concentration of the substance (solute) to transport,

D is the (mass) diffusivity,

𝑆¤𝐶 is the rate of production/consumption of the substance (the sign matters: a positive sign for
production “source”, a negative sign for consumption, “sink”).

Comments

Under the special case where there is no advection (u= 0) nor solute production (𝑆¤𝐶 = 0),

𝜕𝐶

𝜕𝑡
= D∇2𝐶.

This equation is known as Fick’s second law.

The Péclet number, Pe, is an important dimensionless number that measures the ratio of
convection to diffusion,

Pe =
𝑈𝐿

D ,

where 𝑈 is the velocity, 𝐿 is the characteristic length.
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2.6 Solving Navier-Stokes Equations Analytically

The continuity, Navier-Stokes and other transport equations are notoriously difficult to solve. In fluid
mechanics, a few problems have analytical solutions, meaning they can be solved exactly, e.g., the
solutions for Poiseuille flow, Womersley flow, and flow in a square duct.

In this course, we mainly deal with the special cases of the N-S equation – which typically involves
applying the assumptions to simplify the N-S equation and the continuity equation. The following
summarizes the possible assumptions:

Steady flow: 𝜕𝑢
𝜕𝑡

=
𝜕𝑣

𝜕𝑡
=
𝜕𝑤

𝜕𝑡
=
𝜕𝑝

𝜕𝑡
= 0, or 𝜕 (∗)

𝜕𝑡
= 0.

One-dimensional flow (in 𝑥-direction only): 𝜕 (∗)
𝜕𝑦

= 0 and 𝜕 (∗)
𝜕𝑧

= 0 and (usually) 𝑣 = 𝑤 = 0.

This can be generalised in any direction. For example, blood flow in arteries can be analysed
using a one-dimensional approach.

Two-dimensional flow (in 𝑥-𝑦 plane): 𝜕𝑢
𝜕𝑧

=
𝜕𝑣

𝜕𝑧
=
𝜕𝑤

𝜕𝑧
=
𝜕𝑝

𝜕𝑧
= 0, or 𝜕 (∗)

𝜕𝑧
= 0.

Of course, this can be generalised to two-dimensional flow in the (𝑥, 𝑧)- or (𝑦, 𝑧)-planes and also
two-dimensional flow in the (𝑟, 𝜃)-directions in cylindrical polar coordinates. For example, we
may do a lab experiment between closely separated parallel plates to ensure that the flow is
approximately two-dimensional (Hele-Shaw cell).

Axisymmetric flow: 𝜕𝑢𝑟
𝜕𝜃

=
𝜕𝑢𝜃
𝜕𝜃

=
𝜕𝑢𝑧
𝜕𝜃

=
𝜕𝑝

𝜕𝜃
= 0 or 𝜕 (∗)

𝜕𝜃
= 0.

In addition, if there is a symmetry in a plane that includes the axis, we would also have 𝑢𝜃 = 0.
This can be generalised to axisymmetric flow in spherical coordinates (using

𝜕

𝜕𝜙
= 0).

Spherically symmetric flow: 𝜕 (∗)
𝜕𝜃

= 0 and 𝜕 (∗)
𝜕𝜙

= 0 and 𝑢𝜃 = 𝑢𝜙 = 0.

Fully developed flow: 𝜕𝑢
𝜕𝑧

=
𝜕𝑣

𝜕𝑧
=
𝜕𝑤

𝜕𝑧
= 0, but 𝜕𝑝

𝜕𝑧
≠ 0 in general.

Independence of a coordinate: For example, 𝜕/𝜕𝑥 = 0 if nothing in the problem depends on
𝑥 and there is no reason to assume that anything should depend on 𝑥. We used this for the
Stokes boundary layer problem in Section 2.7.

Periodic and sinusoidal flow (with period 𝑇):

𝑢(𝑥, 𝑦, 𝑧, 𝑡) =𝑢0(𝑥, 𝑦, 𝑧)𝑒i𝜔𝑡 + 𝑢0(𝑥, 𝑦, 𝑧)𝑒−i𝜔𝑡 ,

𝑣(𝑥, 𝑦, 𝑧, 𝑡) =𝑣0(𝑥, 𝑦, 𝑧)𝑒i𝜔𝑡 + 𝑣0(𝑥, 𝑦, 𝑧)𝑒−i𝜔𝑡 ,

𝑤(𝑥, 𝑦, 𝑧, 𝑡) =𝑤0(𝑥, 𝑦, 𝑧)𝑒i𝜔𝑡 + 𝑤0(𝑥, 𝑦, 𝑧)𝑒−i𝜔𝑡 ,

𝑝(𝑥, 𝑦, 𝑧, 𝑡) =𝑝0(𝑥, 𝑦, 𝑧)𝑒i𝜔𝑡 + 𝑝0(𝑥, 𝑦, 𝑧)𝑒−i𝜔𝑡 ,

where the angular frequency 𝜔 = 2𝜋/𝑇 . This assumption was made in the Stokes boundary
layer example covered in Section 2.7.

The trick is to look carefully at the problem and think which (if any) of the above assumptions might
be reasonable. We can try making them, and then check that the problem is still consistent. If it is
consistent that is fine, but if not, it means that the assumption was wrong.
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2.7 Examples

Example 1: Hagen-Poiseuille Solution

The Hagen-Poiseuillea solution states that the pressure drop Δ𝑝 of an incompressible, Newto-
nian fluid flowing in a laminar regime through a long cylindrical pipe is given by

Δ𝑝 =
8𝜇𝐿
𝜋𝑅4 · 𝑄, (2.26)

where 𝐿 is the pipe length, 𝑅 is the pipe radius, and 𝑄 is the volumetric flow rate (of the SI unit
[m3/s]).

Question: Derive Equation 2.26 by analytically solving the Navier-Stokes equations.

Answer: We shall first list out the essential assumptions used to simplify the equation.
Namely

1. Steady flow:
𝜕 (★)
𝜕𝑡

= 0;

2. Radial and circumferential components of the fluid velocity are zero: 𝑢𝑟 = 𝑢𝜃 = 0;

3. The flow is assumed to be axisymmetric
𝜕 (★)
𝜕𝜃

= 0;

4. The flow is fully developed along the 𝑧-direction:
𝜕u
𝜕𝑧

= 0;

5. Negligible body force: f = 0.

Apply these assumptions to simplify the governing equations:

The continuity equation:
1
𝑟�

�
��𝜕 (𝑟𝑢𝑟 )

𝜕𝑟
+ 1
𝑟�

��𝜕𝑢𝜃
𝜕𝜃

+
�
��
𝜕𝑢𝑧
𝜕𝑧

= 0

The 𝑟-momentum equation:

𝜌

(
�
��𝜕𝑢𝑟
𝜕𝑡

+
�
�

��
𝑢𝑟
𝜕𝑢𝑟
𝜕𝑟

+
�
�
��𝑢𝜃

𝑟

𝜕𝑢𝑟
𝜕𝜃

+
�
�

��
𝑢𝑧
𝜕𝑢𝑟
𝜕𝑧

−
�
�
�𝑢2
𝜃

𝑟

)
= −𝜕𝑝

𝜕𝑟
+ 𝜇

[
1
𝑟

𝜕

𝜕𝑟

(
𝑟
�
��𝜕𝑢𝑟
𝜕𝑟

)
+ 1
𝑟2�

�
�𝜕2𝑢𝑟

𝜕𝜃2 +
�

�
�𝜕2𝑢𝑟

𝜕𝑧2
−

�
��𝑢𝑟
𝑟2 − 2

𝑟2�
��𝜕𝑢𝜃
𝜕𝜃

]
+ 𝜌��𝑓𝑟

The 𝜃-momentum equation:

𝜌

(
�
��𝜕𝑢𝜃
𝜕𝑡

+
�
�
��

𝑢𝑟
𝜕𝑢𝜃
𝜕𝑟

+
�
�
��𝑢𝜃

𝑟

𝜕𝑢𝜃
𝜕𝜃

+
�
�
��

𝑢𝑧
𝜕𝑢𝜃
𝜕𝑧

+
�
��

𝑢𝑟𝑢𝜃
𝑟

)
= −1

𝑟�
��𝜕𝑝
𝜕𝜃

+ 𝜇
[
1
𝑟

𝜕

𝜕𝑟

(
𝑟
�
��𝜕𝑢𝜃
𝜕𝑟

)
+ 1
𝑟2�

�
�𝜕2𝑢𝜃

𝜕𝜃2 +
�
�
�𝜕2𝑢𝜃

𝜕𝑧2
−
�
��𝑢𝜃
𝑟2 + 2

𝑟2 �
��𝜕𝑢𝑟
𝜕𝜃

]
+ 𝜌��𝑓𝜃

The 𝑧-momentum equation:

𝜌

(
�
��𝜕𝑢𝑧
𝜕𝑡

+
�
�
��

𝑢𝑟
𝜕𝑢𝑧
𝜕𝑟

+
�

�
��𝑢𝜃

𝑟

𝜕𝑢𝑧
𝜕𝜃

+
�

�
��

𝑢𝑧
𝜕𝑢𝑧
𝜕𝑧

)
= −𝜕𝑝

𝜕𝑧
+ 𝜇

[
1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑢𝑧
𝜕𝑟

)
+ 1
𝑟2�

�
�𝜕2𝑢𝑧

𝜕𝜃2 +
�

�
�𝜕2𝑢𝑧

𝜕𝑧2

]
+ 𝜌��𝑓𝑧
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With these assumptions, the continuity equation and 𝜃-momentum equations are trivially sat-

isfied (i.e., LHS=RHS=0). Further, for 𝑟-momentum equation, −𝜕𝑝
𝜕𝑟

= 0 simply implies that the
pressure 𝑝 is constant along the 𝑟-direction. Only the terms left in the 𝑧-momentum equation
need to be solved:

0 = −𝜕𝑝
𝜕𝑧

+ 𝜇
[
1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑢𝑧
𝜕𝑟

)]
=⇒ 𝑟

𝜇

𝜕𝑝

𝜕𝑧
=
𝜕

𝜕𝑟

(
𝑟
𝜕𝑢𝑧
𝜕𝑟

)
∫
(★)d𝑟

=======⇒ 𝑟2

2𝜇
𝜕𝑝

𝜕𝑧
+ 𝑐1 = 𝑟

𝜕𝑢𝑧
𝜕𝑟

∫
(★)d𝑟

=======⇒ 𝑢𝑧 =
𝑟2

4𝜇
𝜕𝑝

𝜕𝑧
+ 𝑐1 ln 𝑟 + 𝑐2 ,

where 𝑐1 and 𝑐2 are two constants subject to the boundary conditions:

No-slip boundary condition: 𝑢𝑧 = 0 at 𝑟 = 𝑅; and

Finite velocity at the centerline of the pipe (i.e., a flat velocity profile):
𝜕𝑢𝑧
𝜕𝑟

= 0 at 𝑟 = 0.

which yields 𝑐1 = 0 and 𝑐2 = −𝑅
2

4𝜇
, hence,

𝑢𝑧 =
1

4𝜇
(𝑟2 − 𝑅2) 𝜕𝑝

𝜕𝑧
.

Assuming the pressure 𝑝 decreases linearly from the inlet 𝑧 = 0 to the outlet 𝑧 = 𝐿, we may

linearize the pressure gradient
𝜕𝑝

𝜕𝑧
= −Δ𝑝

𝐿
:

𝑢𝑧 = − 1
4𝜇

(𝑟2 − 𝑅2)Δ𝑝
𝐿
.

Now we can calculate the volumetric flow rate 𝑄 through the cross-section of the cylinder as

𝑄 =
∫

𝑢𝑧 d𝐴 =
∫ 𝑅

0
𝑢𝑧 2𝜋𝑟 d𝑟 = 𝜋𝑅4Δ𝑝

8𝜇𝐿
,

which matches the Hagen-Poiseuille solution as shown in Equation 2.26.

■
anamed after Gotthilf Heinrich Ludwig Hagen (1797-1884) and Jean Léonard Marie Poiseuille (1797-1869).
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Example 2: Stokes Boundary Layer

In this question, you will investigate the flow field generated next to a flat oscillating plate.
Assume that the plate is at 𝑦 = 0 with an incompressible Newtonian fluid of density 𝜌 and kine-
matic viscosity 𝜈 in 𝑦 > 0, and that the plate oscillates purely in the 𝑥-direction with displacement
𝐴 cos𝜔𝑡 i at time 𝑡, as shown in the diagram below.

𝑦

Displacement 𝐴 cos𝜔𝑡

Fluid in 𝑦 ≥ 0
𝑥

You may also assume that the plate and volume of fluid are large enough that you can neglect
their boundaries (that is, the plate occupies the whole plane 𝑦 = 0 and the fluid occupies the
whole of 𝑦 > 0) and that the plate has been oscillating long enough so that the whole fluid is
oscillating periodically.

Question: Write down the equations and boundary conditions governing the flow.

Answer: The fluid is governed by the Navier-Stokes and continuity equations:

𝜕u
𝜕𝑡

+ (u · ∇)u = − 1
𝜌
∇𝑝 + 𝜈∇2u, ∇ · u = 0.

At 𝑦 = 0 the boundary conditions are

𝑢 = −𝐴𝜔 sin𝜔𝑡, 𝑣 = 𝑤 = 0.

Question: Write down assumptions about the components of the fluid flow and their depen-
dence on the spatial coordinates 𝑥, 𝑦 and 𝑧. Use this to simplify the governing equations and
boundary conditions.

Answer: We assume this is a two-dimensional flow, with 𝑤 = 0 and all components not
depending on 𝑧. In addition, we assume the velocity components do not depend on 𝑥 (because
translating the problem in the 𝑥-direction is the same problem). Thus we have 𝑢(𝑦, 𝑡), 𝑣(𝑦, 𝑡),
𝑤 = 0 and 𝑝(𝑦, 𝑡).

The continuity equation is
𝜕𝑢

𝜕𝑥
+ 𝜕𝑣
𝜕𝑦

+ 𝜕𝑤
𝜕𝑧

= 0.

The first and third terms are zero by assumption, and therefore

𝜕𝑣

𝜕𝑦
= 0.

Hence 𝑣 is constant, and the boundary condition 𝑣 = 0 at 𝑦 = 0 implies that 𝑣 = 0 everywhere.
The three components of the Navier–Stokes equation simplify to

𝜕𝑢

𝜕𝑡
+ 0 + 0 + 0 = 0 + 𝜈

(
0 + 𝜕

2𝑢

𝜕𝑦2 + 0
)
,

0 + 0 + 0 + 0 = − 1
𝜌

𝜕𝑝

𝜕𝑦
+ 𝜈 (0 + 0 + 0) ,

0 + 0 + 0 + 0 = 0 + 𝜈 (0 + 0 + 0) .
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Thus 𝑝 is constant in space and the only non-trivial equation is

𝜕𝑢

𝜕𝑡
= 𝜈

𝜕2𝑢

𝜕𝑦2 ,

together with boundary conditions 𝑢 = −𝐴𝜔 sin𝜔𝑡 at 𝑦 = 0.

Question: Assume that the flow and pressure are sinusoidal, that is u(x, 𝑡) = U(x)𝑒i𝜔𝑡 +
U(x)𝑒−i𝜔𝑡 and 𝑝(x, 𝑡) = 𝑃(x)𝑒i𝜔𝑡 + 𝑃(x)𝑒−i𝜔𝑡 . Use this to simplify and solve the governing
equations to find the velocity field.

Answer: The periodic assumption simplifies to 𝑢 = 𝑈 (𝑦)𝑒i𝜔𝑡 + 𝑈 (𝑦)𝑒−i𝜔𝑡 (the other compo-
nents are not needed). Substituting into the governing equation,

i𝜔𝑈𝑒i𝜔𝑡 − i𝜔𝑈 (𝑦)𝑒−i𝜔𝑡 = 𝜈

(
d2𝑈

d𝑦2 𝑒
i𝜔𝑡 + d2𝑈

d𝑦2 𝑒
−i𝜔𝑡

)
.

The coefficients of 𝑒i𝜔𝑡 must balance and the coefficients of 𝑒−i𝜔𝑡 must balance. Therefore

i𝜔𝑈 = 𝜈
d2𝑈

d𝑦2 , and − i𝜔𝑈 = 𝜈
d2𝑈

d𝑦2 .

These two equations are the complex conjugates of one another, so we only need to solve one
of them, which gives the general solution

𝑈 = 𝐶1𝑒

√
i𝜔
𝜈 𝑦 + 𝐶2𝑒

−
√

i𝜔
𝜈 𝑦
.

The function 𝑒
√

i𝜔
𝜈 𝑦 → ∞ as 𝑦 → ∞, and thus 𝐶1 = 0. The boundary condition 𝑢 = −𝐴𝜔 sin𝜔𝑡 =

(𝐴𝜔i/2)𝑒i𝜔𝑡 − (𝐴𝜔i/2)𝑒−i𝜔𝑡 at 𝑦 = 0. Hence 𝑈 = 𝐴𝜔i/2, meaning that 𝐶2 = 𝐴𝜔i/2. Hence

𝑢 =
𝐴𝜔i

2
𝑒
−
√

i𝜔
𝜈 𝑦+i𝜔𝑡 − 𝐴𝜔i

2
𝑒
−
√

−i𝜔
𝜈 𝑦−i𝜔𝑡

= − 𝐴𝜔
2i

(
𝑒−(1+i)

√
𝜔
2𝜈 𝑦+i𝜔𝑡 − 𝑒−(1−i)

√
𝜔
2𝜈 𝑦−i𝜔𝑡

)
= −𝐴𝜔𝑒−

√
𝜔
2𝜈 𝑦

(
𝑒i(−

√
𝜔
2𝜈 𝑦+𝜔𝑡 ) − 𝑒−i(−

√
𝜔
2𝜈 𝑦+𝜔𝑡 )

)
2i

= −𝐴𝜔𝑒−
√

𝜔
2𝜈 𝑦 sin

(
𝜔𝑡 −

√
𝜔

2𝜈
𝑦

)
.

■

Question: Sketch the velocity profile at time 𝑡.

Answer: The velocity profile is a sinusoidal function whose amplitude decays exponentially
with the distance from the surface.
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𝑦

𝑥

This is a famous exact solution of the Navier-Stokes equations, and the flow we have found
here is characteristic of the flow that exists near an oscillating boundary. Note that the flow
decays away from the wall, and for this reason, it is often described as a boundary layer, and
the solution is called Stokes boundary layer flow.
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3 Analytical Solutions of the Navier-Stokes Equations

In addition to the two examples provided in Section 2.7, in this section, we shall explore two analytical
solutions of the Navier-Stokes equations obtained under the physically and physiologically meaningful
assumptions and boundary conditions.

In Section 3.1, we consider steady, fully developed laminar flow in a rectangular channel, for
which the velocity field can be derived following the principle of linear superposition.

In Section 3.2, we examine the unsteady, pressure-driven flow in a rigid circular pipe, known
as the Womersley solution, which extends the classical Poiseuille flow to pulsatile conditions
commonly encountered in physiological flows.

3.1 Flow in a Rectangular Channel

Consider the flow in a rectangular duct (length 𝐿, width 𝑤, height ℎ) in the Cartesian coordinate system
(Figure 3.1). We want to obtain an analytical solution to the flow profile within the rectangular channel.

y

z

x

z = -w/2

z = w/2

y = h/2

y = -h/2

L

Figure 3.1: The schematic for the flow in a rectangular duct.

3.1.1 Problem Definition

Assumptions

Fluid is homogeneous, incompressible and Newtonian with viscosity 𝜇 and density 𝜌;

Flow has reached the steady state: 𝜕u/𝜕𝑡 = 0;

Flow is fully developed along the 𝑥-direction: 𝜕u/𝜕𝑥 = 0;

Zero velocity along the 𝑦- and 𝑧-directions: 𝑣 = 0, 𝑤 = 0;

Negligible body force: f = 0.

Boundary Conditions

Symmetrical flow profile at 𝑦 = 0 and 𝑧 = 0;

no-slip condition at the wall 𝑦 = ±ℎ/2, 𝑧 = ±𝑤/2.
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3.1.2 Solution Procedure

Step 1 Starting from the 𝑥-component of the N-S equation, apply the assumptions:

𝜌

(
�
��𝜕𝑢
𝜕𝑡

+
�
��𝑢
𝜕𝑢

𝜕𝑥
+
�
�
�

𝑣
𝜕𝑢

𝜕𝑦
+
�
��𝑤
𝜕𝑢

𝜕𝑧

)
= −𝜕𝑝

𝜕𝑥
+ 𝜇

(
�
�
�𝜕2𝑢

𝜕𝑥2 + 𝜕
2𝑢

𝜕𝑦2 + 𝜕
2𝑢

𝜕𝑧2

)
+ 𝜌��𝑓𝑥

⇒ 0 = −𝜕𝑝
𝜕𝑥

+ 𝜇
(
𝜕2𝑢

𝜕𝑦2 + 𝜕
2𝑢

𝜕𝑧2

)
(3.1)

Similarly, we can apply the assumptions to the 𝑦- and 𝑧-components of the N-S equations, all terms
are cancelled out, leaving 0 = 0 on both sides.

Step 2 Equation 3.1 is nonhomogenous! To solve this equation, we further assume that the solution
is a combination of simple parallel plate Poiseuille flow plus some perturbation that is dependent on
the walls and finite width:

𝑢(𝑦, 𝑧) = 𝑢parabolic(𝑦) + 𝜙(𝑦, 𝑧)︸ ︷︷ ︸
perturbation

and

0 = −𝜕𝑝
𝜕𝑥

+ 𝜇
𝜕𝑢2

parabolic

𝜕𝑦2︸                    ︷︷                    ︸
=0, Poiseuille solution

+𝜇
(
𝜕2𝜙

𝜕𝑦2 + 𝜕
2𝜙

𝜕𝑧2

)

Since the first term is exactly the Poiseuille solution, the second term involves the derivatives of the
perturbation function must be 0; Therefore, we now only need to find the solution of the perturbation
function 𝜙(𝑦, 𝑧) to solve 𝑢(𝑦, 𝑧).

𝜇

(
𝜕2𝜙

𝜕𝑦2 + 𝜕
2𝜙

𝜕𝑧2

)
= 0 (3.2)

Step 3 Equation 3.2 is homogeneous! We can then employ the separation of variable method, for
which 𝜙 is the product of a 𝑦-dependent function and a 𝑧-dependent function.

𝜙(𝑦, 𝑧) = 𝑌 (𝑦)𝑍 (𝑧)

Therefore,

0 = 𝑍 (𝑧) 𝜕
2𝑌 (𝑦)
𝜕𝑦2 + 𝑌 (𝑦) 𝜕

2𝑍 (𝑧)
𝜕𝑧2

=
1

𝑌 (𝑦)
𝜕2𝑌 (𝑦)
𝜕𝑦2 + 1

𝑍 (𝑧)
𝜕2𝑍 (𝑧)
𝜕𝑧2

Since each term is independent of the other term, therefore, we conclude that each term must be a
constant.

𝜆2 = − 1
𝑌 (𝑦)

𝜕2𝑌 (𝑦)
𝜕𝑦2 =

1
𝑍 (𝑧)

𝜕2𝑍 (𝑧)
𝜕𝑧2

.

So far, We have decomposed the partial differential equation into two ordinary differential equations
(ODE). We will now address each of the ODE separately. The general solutions of 𝑌 (𝑦) and 𝑍 (𝑧) are

𝑌 (𝑦) = 𝐴1 sin(𝜆𝑦) + 𝐴2 cos(𝜆𝑦)
𝑍 (𝑧) = 𝐵1 sinh(𝜆𝑦) + 𝐵2 cosh(𝜆𝑦)

where 𝐴1, 𝐴2, 𝐵1, 𝐵2 are constants subject to the specific boundary conditions.
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Step 4 Solving 𝑌 (𝑦):

Applying the first 𝑦-related boundary condition: the flow profile is symmetrical at 𝑦 = 0, this
implies that on the ‘tip’ of the velocity profile (maximum velocity), d𝑌/d𝑦 = 0, yielding 𝐴1 = 0.

Applying the second 𝑦-related boundary condition: at 𝑦 = ±ℎ/2, 𝑢 = 0:

d𝑌
d𝑦

����
𝑦=ℎ/2

= −𝐴2𝜆 sin
(
𝜆
ℎ

2

)
= 0,

since 𝐴2 cannot be 0 (otherwise, the solution 𝑌 (𝑦) is nontrivial!), we know sin
(
𝜆 ℎ

2

)
= 0, implying

𝜆
ℎ

2
=

(2𝑛 + 1)𝜋
2

(= 𝜆𝑛), where 𝑛 is a positive integer.

Step 5 Solving 𝑍 (𝑧):

Applying the first 𝑧-related boundary condition: the flow profile is symmetrical at 𝑧 = 0, this
implies that on the ‘tip’ of the velocity profile (maximum velocity), d𝑍/d𝑧 = 0, yielding 𝐵1 = 0.

Step 6 So far, the solution for 𝜙(𝑦, 𝑧) is

𝜙(𝑦, 𝑧) = 𝑌 (𝑦)𝑍 (𝑧) =
∞∑
𝑛=1

𝐴1 cos(𝜆𝑦) 𝐵2 cosh(𝜆𝑧)

=
∞∑
𝑛=1

𝐴𝑛 cos(𝜆𝑦) cosh(𝜆𝑧). (3.3)

where 𝐴𝑛 is a constant that combines 𝐴2 and 𝐵𝑛; however, what is the expression of 𝐴𝑛? We apply
the final boundary: at 𝑧 = ±𝑤/2, 𝑢 = 0, this expression is equivalent to 𝜙(𝑦,±𝑤/2) = 𝑢parabolic:

𝜙(𝑦, 𝑤/2) =
∞∑
𝑛=1

𝐴𝑛 cos(𝜆𝑦) 𝐵2 cosh
(
𝜆
𝑤

2

)
= 𝑢parabolic =

1
2𝜇

𝜕𝑝

𝜕𝑥

[
𝑦2 −

(
ℎ

2

)2]
(3.4)

Looking at Equation 3.4, both sides only involve one variable 𝑦 - hence we are (somehow...) reassured
that 𝐴𝑛 can be found by integrating both sides of equation w.r.t. 𝑦 from −ℎ to ℎ.

Step 7 One more step to take before integration: we need to multiply both sides by a cos
(
𝜆𝑚𝑦

ℎ/2

)
term - this step is essential to make both sides of the equation appropriately periodic.

For simplicity, we write 𝜆 =
𝜆𝑛
ℎ/2 from step 4 (where 𝜆𝑛 =

(2𝑛 + 1)𝜋
2

):

∞∑
𝑛=1

∫ ℎ

−ℎ
cos

(
𝜆𝑚𝑦

ℎ/2

)
𝐴𝑛 cos(𝜆𝑛𝑦) 𝐵2 cosh

(
𝜆𝑛
𝑤

2

)
d𝑦 =

∫ ℎ

−ℎ
cos

(
𝜆𝑚𝑦

ℎ/2

) [
1

2𝜇
𝜕𝑝

𝜕𝑥

(
𝑦2 −

(
ℎ

2

)2
)]

d𝑦 .

On the LHS, due to the orthogonality of Fourier terms (cosine terms), all terms where 𝑚 ≠ 𝑛 will
become 0! Only the term with 𝑛 = 𝑚 will remain, this will allow us to find an expression for coefficient
𝐴𝑚

3.

3Yes, 𝐴𝑚 = 𝐴𝑛 for 𝑚 = 𝑛, but in our final expression the 1
2𝜇

𝜕𝑝
𝜕𝑥 are separated and grouped with other terms, leaving an

𝐴𝑛 as defined as shown below, hence, we use the subscript 𝑚 to denote the solution from integration, to distinguish from
𝐴𝑛 presented in our final solution.
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Step 8 This fancy expression finally yields a result of 𝐴𝑚

𝐴𝑚 =
1

2𝜇
𝜕𝑝

𝜕𝑥

ℎ2(−1)𝑛

𝜆3
𝑛 cosh

(
𝜆𝑛𝑤

ℎ

) .
which concludes our solution procedure. Substituting back to the expression of 𝑢, our final solution

𝑢 =
1

2𝜇
𝜕𝑝

𝜕𝑥

[
𝑦2 −

(
ℎ

2

)2
−

∞∑
𝑛=0

𝐴𝑛 cos
(
𝜆𝑛𝑦

ℎ/2

)
cosh

(
𝜆𝑛𝑧

ℎ/2

)]
,

where 𝐴𝑚 =
ℎ2(−1)𝑛

𝜆3
𝑛 cosh 𝜆𝑛𝑤

ℎ

, with 𝜆𝑛 =
(2𝑛 + 1)𝜋

2
for 𝑛 ∈ Z≥0.

3.1.3 Result and Extended Quantities

The analytical solution of 𝑢:

𝑢 =
1

2𝜇
𝜕𝑝

𝜕𝑥

[
𝑦2−

(
ℎ

2

)2
−

∞∑
𝑛=0

𝐴𝑛 cos
(
𝜆𝑛𝑦

ℎ/2

)
cosh

(
𝜆𝑛𝑧

ℎ/2

)]
, where 𝐴𝑛 =

ℎ2(−1)𝑛

𝜆3
𝑛 cosh 𝜆𝑛𝑤

ℎ

, 𝜆𝑛 =
(2𝑛 + 1)𝜋

2
.

The flow rate 𝑄 is found by integrating 𝑢 over the area,

𝑄 =
𝜕𝑝

𝜕𝑥

𝑤ℎ3

12𝜇

[
6
(
ℎ

𝑤

) ∞∑
𝑛=0

𝜆−5
𝑛 tanh

(
𝜆𝑛𝑤

ℎ

)
− 1

]
.

Still, one needs to take 4∼5 𝑛-terms to obtain a sufficiently accurate solution of 𝑄; A good
numerical approximation of 𝑄 (10% error for ℎ/𝑤 ≥ 0.7):

𝑄 ≈ 𝜕𝑝

𝜕𝑥

𝑤ℎ3

12𝜇

[
1 − 0.6274

(
ℎ

𝑤

)]
.

The flow resistance 𝑅 is found by 𝑄 = Δ𝑝/𝑅:

𝑅 =
Δ𝑝
𝑄

=
12𝜇𝐿

𝑤ℎ3
[
1 − 0.6274

(
ℎ

𝑤

)] . 𝑝high 𝑅

Δ𝑝

𝑝low

For more complex flow systems with multiple channels connected in series or in parallel (Fig-
ure 3.2), the total flow resistance 𝑅total can be calculated as follows:

in series: 𝑅total = 𝑅1 + 𝑅2 + 𝑅3 + ...,

in parallel:
1

𝑅total
=

1
𝑅1

+ 1
𝑅2

+ 1
𝑅3

+ ....

R
1

R
2

R
3

R
1

R
2

R
3

(a) (b)

Figure 3.2: Examples of multi-channel systems: (a) three channels connected in series; (b) three
channels connected in parallel.
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3.2 The Womersley Flow

We consider a long, circular cylindrical channel of radius 𝑎, and work in cylindrical polar coordinates
centred on the axis of the pipe. We want to obtain an unsteady analytical solution to the flow profile
within the channel. The Wormsley flow4 occurs in pipes in which there is an imposed oscillating
pressure gradient; it is a good approximation to the pulsatile flow in the human cardiovascular system.

cosine 

wave 

pressure

Figure 3.3: The schematic of the Womersley flow in a pipe.

3.2.1 Problem Definition

Assumptions

Fluid is homogeneous, incompressible and Newtonian with viscosity 𝜇 and density 𝜌;

Flow in a long straight tube, with a perfect circular cross-section at radius 𝑎;

Axisymmetric about the 𝑧-axis: 𝜕/𝜕𝜃 = 0;

The flow is fully developed along the 𝑧-axis: 𝜕u/𝜕𝑧 = 0;

No swirls: 𝑢𝜃 = 0;

No velocity along the radial direction: 𝑢𝑟 = 0;

Negligible body force: f = 0.

Boundary Conditions No-slip condition on the wall, flow symmetry about the centreline. The flow
is driven by a time-periodic axial pressure gradient.

3.2.2 Solution Procedure

Step 1 Starting from the 𝑧-component of the N-S equation, apply the assumptions:

𝜌

(
𝜕𝑢𝑧
𝜕𝑡

+
�

�
��

𝑢𝑟
𝜕𝑢𝑧
𝜕𝑟

+
�
�
��𝑢𝜃

𝑟

𝜕𝑢𝑧
𝜕𝜃

+
�
�
��

𝑢𝑧
𝜕𝑢𝑧
𝜕𝑧

)
= −𝜕𝑝

𝜕𝑧
+ 𝜇

[
1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑢𝑧
𝜕𝑟

)
+ 1
𝑟2�

�
�𝜕2𝑢𝑧

𝜕𝜃2 +
�

�
�𝜕2𝑢𝑧

𝜕𝑧2

]
+ 𝜌��𝑓𝑧

⇒ 𝜌
𝜕𝑢𝑧
𝜕𝑡

= −𝜕𝑝
𝜕𝑧

+ 𝜇1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑢𝑧
𝜕𝑟

)
, (3.5)

which is the governing equation for the Womersley flow.

4named after John R. Womersley (1907–1958).
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Step 2 For the Womersely flow, we hypothesise that the pressure gradient
𝜕𝑝

𝜕𝑧
is sinusoidal:

𝜕𝑝

𝜕𝑧
= 𝐺0 cos(𝜔𝑡) = 𝐺0

2
𝑒i𝜔𝑡 , (3.6)

where 𝐺0 ∈ R+ is a constant, i =
√
−1 is the imaginary unit.

Why
𝜕𝑝

𝜕𝑧
is a function of time? Consider what happens to the three terms in Equation (3.5). Easy to

see

𝑢𝑧 is a function of 𝑡 and 𝑟; 𝑝 is a function of 𝑧.

However, to maintain the equality of both sides,
𝜕𝑝

𝜕𝑧
cannot be a function a of 𝑧, thus 𝑝 = 𝐴(𝑡)𝑧 +

𝐵(𝑡), where 𝐴 and 𝐵 are unknown functions of time.

For Womersley flow, we deliberately select 𝐴(𝑡) = −𝐺0 cos(𝜔𝑡), yielding Equation (3.6). Note
the minus symbol here, since a negative pressure gradient is required to drive the flow from the
inlet to the outlet.

Step 3 We select a trial solution of 𝑢𝑧 of the form:

𝑢𝑧 (𝑟, 𝑡) = 𝑈 (𝑟)𝑒i𝜔𝑡 , (3.7)

where 𝑈 (𝑡) is a complex-valued function (i.e. 𝑈 ↔ 𝑈̄). Substituting this into Equation (3.5), we obtain

𝜌i𝜔𝑈𝑒i𝜔𝑡 − 𝜌i𝜔𝑈𝑒−i𝜔𝑡︸                         ︷︷                         ︸
𝜌
𝜕𝑢𝑧
𝜕𝑡

=
𝐺0
2
𝑒i𝜔𝑡 + 𝐺0

2
𝑒−i𝜔𝑡︸                   ︷︷                   ︸

𝜕𝑝
𝜕𝑧

+ 𝜇
1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑈

𝜕𝑟

)
𝑒i𝜔𝑡 + 𝜇1

𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑈

𝜕𝑟

)
𝑒−i𝜔𝑡

︸                                                 ︷︷                                                 ︸
𝜇 1

𝑟
𝜕
𝜕𝑟

(
𝑟
𝜕𝑢𝑧
𝜕𝑟

)

⇒
{
𝜌i𝜔𝑈 − 𝐺0

2
− 𝜇1

𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑈

𝜕𝑟

)}
𝑒i𝜔𝑡 +

{
−𝜌i𝜔𝑈 − 𝐺0

2
− 𝜇1

𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑈

𝜕𝑟

)}
𝑒−i𝜔𝑡 = 0

⇒ i𝜔𝜌𝑈 − 𝐺0
2

− 𝜇1
𝑟

d
d𝑟

(
𝑟

d𝑈
d𝑟

)
= 0

⇒ d2𝑈

d𝑟2 + 1
𝑟

d𝑈
d𝑟

− i𝜔𝜌

𝜇
𝑈 = −𝐺0

2𝜇
. (3.8)

Equation (3.8) is a linear, second-order, non-constant-coefficient, non-homogeneous ordinary differ-
ential equation for 𝑈.

Step 4 We can therefore solve Equation (3.8) as a complementary function 𝑈cf plus a particular
integral 𝑈pi. The particular integral is given by

𝑈pi =
𝐺0

2i𝜔𝜌
. (3.9)

To find the complementary function, we must solve
d2𝑈cf
d𝑟2 + 1

𝑟

d𝑈cf
d𝑟

− i𝜔𝜌

𝜇
𝑈cf = 0, (3.10)

and substituting 𝑠 = (
√
−i𝜔/𝜈)𝑟 and simplifying, we remove the coefficients on the left-hand side to

obtain
d2𝑈cf
d𝑠2

+ 1
𝑠

d𝑈cf
d𝑠

+𝑈cf = 0. (3.11)

This equation is the standard form of a special equation called Bessel equation.
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Comments: There are two linearly independent solutions for the Bessel equation, namely

Bessel function of the first kind: 𝐽𝑛 (𝑥) =
+∞∑
𝑘=0

(−1)𝑘
𝑘!(𝑘 + 𝑛)!

(
𝑥

2

)2𝑘+𝑛
.

Bessel function of the second kind: 𝑌𝑛 (𝑥) =
𝐽𝑛 (𝑥) cos(𝑛𝜋) − 𝐽−𝑛 (𝑥)

sin(𝑛𝜋) .

Figure 3.4: (a) Bessel functions of the first kind, 𝐽0, 𝐽1 and 𝐽2; (b) Bessel functions of the second
kind, 𝑌0, 𝑌1 and 𝑌2 ( Wikipedia).

We therefore obtain the complementary function

𝑈cf = 𝐶1𝐽0(𝑠) + 𝐶2𝑌0(𝑠), (3.12)

where 𝐶1 and 𝐶2 are constants of integration, and thus

𝑈 = 𝑈cf +𝑈pi = 𝐶1𝐽0

(√
−i𝜔
𝜈
𝑟

)
+ 𝐶2𝑌0

(√
−i𝜔
𝜈
𝑟

)
+ 𝐺0

2i𝜔𝜌

= 𝐶1𝐽0

(√
−i𝛼 𝑟

𝑎

)
+ 𝐶2𝑌0

(√
−i𝛼 𝑟

𝑎

)
+ 𝐺0

2i𝜔𝜌
, (3.13)

where the Womersley number 𝛼 is a dimensionless parameter defined by 𝛼 = 𝑎

√
𝜔

𝜈
.

Step 5 To find the constants 𝐶1 and 𝐶2 we apply the boundary conditions and regularity conditions
at the origin 𝑟 = 0:

At 𝑟 = 0: The function 𝑌0(𝑥) tends to infinity as 𝑥 → 0, so contributions from 𝑌0((
√
−i𝜔/𝜈)𝑟) are

not allowed, meaning that 𝐶2 must be set to zero.

At 𝑟 = 𝑎: The no-slip boundary condition is 𝑢𝑧 = 0 at the wall for all times, which from Equa-
tion (3.7) means that 𝑈 must also be zero at 𝑟 = 𝑎. Substituting into Equation (3.13) gives

𝐶1 = − 𝐺0

2i𝜔𝜌𝐽0(
√
−i𝛼)

.

Hence

𝑈 =
𝐺0

2i𝜔𝜌

(
1 − 𝐽0(

√
−i𝛼𝑟/𝑎)

𝐽0(
√
−i𝛼)

)
, (3.14)
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and, substituting 𝑈 into Equation (3.7), we get

𝑢𝑧 = − i𝐺0
2𝜔𝜌

(
1 − 𝐽0(

√
−i𝛼𝑟/𝑎)

𝐽0(
√
−i𝛼)

)
𝑒i𝜔𝑡

=
i𝐺0
2𝜔𝜌

[
1 −

𝐽0(i3/2𝛼 𝑟
𝑎 )

𝐽0(i3/2𝛼)

]
𝑒𝑖𝜔𝑡 with 𝐽0(𝑠) =

+∞∑
𝑘=0

(−1)𝑘
𝑘!𝑘!

(
𝑠

2

)2𝑘
, (3.15)

3.2.3 Result and Extended Quantities

The Womersley solution Equation (3.15) is defined in the complex domain; but for simplicity, we only
consider the real part to interpret its physical meaning.

1. The analytical solution 𝑢𝑧:

𝑢𝑧 = <
{
i𝐺0
2𝜔𝜌

[
1 −

𝐽0(i3/2𝛼 𝑟
𝑎 )

𝐽0(i3/2𝛼)

]
𝑒i𝜔𝑡

}
with 𝐽0(𝑠) =

+∞∑
𝑘=0

(−1)𝑘
𝑘!𝑘!

(
𝑠

2

)2𝑘
,

where 𝐽0 is the Bessel function of the first-kind at 0th-order.

2. The wall shear stress 𝜏𝑟 𝑧:

𝜏𝑟𝑧 = 𝜇
𝜕𝑢𝑧
𝜕𝑟

= 𝜇<
{
− 𝑎

i3/2𝛼

(
𝐽1(i3/2𝛼)
𝐽0(i3/2𝛼)

)
𝜕𝑝

𝜕𝑧

}
, with 𝐽1(𝑠) = −𝜕𝐽0(𝑠)

𝜕𝑠
.

3. The flow rate 𝑄:

𝑄(𝑡) =
∫ 𝑎

0
2𝜋𝑟𝑢𝑧d𝑟 = <

{
− 𝜋𝑎4

i𝜇𝛼2

(
1 − 2𝐽1(𝑖3/2𝛼)

𝛼i3/2𝐽0(i3/2𝛼)

)
𝜕𝑝

𝜕𝑧

}
.

The Womersley Number The Womersley number 𝛼 is the ratio between unsteady inertia force and
vthe iscous force.

𝛼 ≤ 1: Quasi-steady, the velocity profile is scaled Poiseuille flow, mainly observed in the mi-
crovasculatures (e.g., capillaries, venules);

𝛼 > 1: Oscillatory (a.k.a. plug flow), the velocity profile is balanced between viscous forces
at the wall and inertial forces in the centre. Common in large arteries (e.g., ascending aorta,
carotid artery).

(c)(a) (b)

Figure 3.5: Snapshots of sketches of Womersley flow profiles for various Womersley numbers. (a)
Low Womersley number (profile is Poiseuille flow multiplied by a time-dependent factor), (b) inter-
mediate Womersley number, (c) high Womersley number (profile is flat across the interior with a
boundary layer in which the flow oscillates rapidly).
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Application of Womersley solution How do we use the Womersley solution to model a more
complex flow? Since the Womersley flow assumes no convective acceleration, the solution is linear.
Therefore, we can break down any arbitrary flow waveform into the orthogonal bases, e.g., the Fourier
terms, with each mode being an independent Womersley solution, and superimpose all components
to reconstruct the Womersley flow (Figure 3.6).

Figure 3.6: Schematic to decompose and reconstruct an arbitrary flow waveform using theWomer-
sley solution.

Limitations of Womersley Solution

No convective acceleration is considered – no tapering of the vessel, no vascular distension;

The Womersley solution assumes flow in a straight pipe – effects such as bending are not
considered;

No entrance effects are considered, and flow is assumed to be fully developed;

The Womersley solution assumes flow is laminar.
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4 Turbulence and Energy Equations

4.1 Turbulence

The Reynolds number The Reynolds number5, Re, is a dimensionless number that measures the
ratio of the inertial force to the viscous force. For tube flow,

Re =
𝜌𝑈𝐷

𝜇
=
𝑈𝐷

𝜈
=


< 2000, laminar

2000 − 3000, transient

> 3000, turbulent

, (4.1)

where 𝐷 is the pipe diameter, and 𝑈 is the average velocity.

Comments

Although a high Reynolds number is often correlated with turbulence, the true cause is the
dominance of inertial forces over viscous forces - high Re merely reflects (but does not by itself
cause) that dominance.

Turbulence characteristics

Random variation of fluid properties (e.g., pressure and velocities) in time and space. Each
property (e.g., velocity, pressure, kinetic energy) has a specific continuous energy spectrum
which drops to zero at high wave numbers (e.g., Figure 4.9 for turbulent kinetic energy);

Eddies or fluid structures spanning a wide range of length scales, which interact and transfer
energy from large scales to progressively smaller ones; this process is known as the energy
cascade (Figure 4.1);

Self-sustaining motion – once triggered, turbulent flow can maintain itself by producing new
eddies to replace those lost to viscous dissipation;

Mixing – rapid convection of mass, momentum and energy, much stronger than laminar flows
(Figure 4.2).

Integral scale: 

generation of turbulent 

kinetic energy

Kolmogorov scale: 

dissipation of turbulent 

via molecular viscosity

Taylor scale: turbulent

kinetic energy cascades

down with time

Figure 4.1: Cascade of turbulence kinetic energy. The turbulence kinetic energy is generated on the
integral scale (large eddies) and dissipated on the Kolmogorov scale (small eddies).

5named after Osborne Reynolds (1842-1912).
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(a) (b)

Figure 4.2: (a) High viscosity, lowRe, the laminar flow behaves quasi-steady; (b) low-viscosity, high
Re, turbulent flow. (National Committee for Fluid Mechanics Films)

Reynolds averaging and turbulent shear stress Turbulence cannot be deterministically predicted.
It can only be characterised in a statistical manner by decomposing a certain flow quantity (e.g., ve-
locity) into the mean and standard deviation (fluctuation) components.

𝑢(𝑡) = 𝑢 + 𝑢′(𝑡), (4.2)

where

Average velocity: 𝑢 =
1
𝑇

∫ 𝑇

0
𝑢 d𝑡,

Velocity fluctuation: 𝑢′(𝑡) = 𝑢(𝑡) − 𝑢.

Figure 4.3 demonstrates the velocity components from a 1-D turbulent velocity profile (𝑢 component
only).

Figure 4.3: Turbulence velocity can be decomposed into the average component and the instanta-
neous velocity fluctuation.

With Equation 4.2, we can rewrite the 𝑥-momentum equation as (similar for 𝑦- and 𝑧-momentum
equations)

𝜌
𝐷𝑢

𝐷𝑡
= −𝜕 𝑝̄

𝜕𝑥
+ 𝜕

𝜕𝑥

(
𝜇
𝜕𝑢

𝜕𝑥
− 𝜌𝑢′𝑢′

)
+ 𝜕

𝜕𝑦

(
𝜇
𝜕𝑢

𝜕𝑦
− 𝜌𝑢′𝑣′

)
+ 𝜕

𝜕𝑧

(
𝜇
𝜕𝑢

𝜕𝑧
− 𝜌𝑢′𝑤′

)
+ 𝜌 𝑓𝑥 , (4.3)

where the 𝜌𝑢′𝑖𝑢
′
𝑗 terms are referred to as the Reynolds stresses or turbulent shear stresses (9 terms

in total). The total shear stress is the sum of the laminar shear stress and turbulent shear stress:

𝜏 = 𝜏lam + 𝜏turb = 𝜇
𝜕𝑢𝑖
𝜕𝑥 𝑗

− 𝜌𝑢′𝑖𝑢′𝑗 . (4.4)

Quantitative characteristics of turbulence
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Turbulence intensity, TI, measures how strong the velocity fluctuations are compared to the
mean flow (Figure 4.4).

For 1-D turbulent flow (𝑢-component only):

TI =

√
𝑢′2

𝑢
, (4.5)

where the numerator
√
𝑢′2 is the root mean square (RMS) of velocity fluctuation.

In the 3-D flow scenario (general form), TI can be expressed as

TI = 1√
𝑢 𝑗𝑢 𝑗

√
1
3
𝑢′𝑖𝑢

′
𝑖 =

1√
𝑢2 + 𝑣2 + 𝑤2

√
1
3
(𝑢′2 + 𝑣′2 + 𝑤′2). (4.6)

Note that TI is dimensionless, and it is often reported as a percentage.

Figure 4.4: Two 1-D turbulent velocity profiles with identical mean velocity but different TI. Left:
low TI; Right: high TI.

Turbulent kinetic energy, 𝑘, quantifies how much kinetic energy is contained in the velocity fluc-
tuations of a turbulent flow. Mathematically:

𝑘 =
1
2
𝑢′𝑖𝑢

′
𝑖 =

1
2
(𝑢′2 + 𝑣′2 + 𝑤′2) (4.7)

Using Equation (4.6), TI can be written as

TI = 1√
𝑢 𝑗𝑢 𝑗

√
2
3
𝑘. (4.8)
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4.2 Turbulent Boundary Layer

What is Boundary Layer? The boundary layer (BL) is a thin layer of fluid in the vicinity of the wall
in which the velocity rises from zero at the wall surface (no-slip) to the free-stream velocity (i.e., 𝑈 in
Figure 4.5) away from the surface (along the 𝑦-direction in Figure 4.5). Outside the boundary layer,
the mean flow velocity is 𝑈.

BLs can be laminar, transition, or turbulent. As depicted in Figure 4.5, the laminar BL is a smooth, thin
layer; the turbulent BL contains swirls (eddies), and is generally thicker; while the transition boundary
layer is in between.

laminar

transition

turbulent

Figure 4.5: Velocity boundary layer development on a flat plate. (Incropera et al.)

Turbulent Boundary Layer As shown in Figure 4.6, the turbulent boundary layer can be further
decomposed into 4 regions; from bottom to top, these are:

1. Viscous sublayer: the bottom layer closest to the wall, also
known as the laminar layer, where the viscous effects dom-
inate.

2. Buffer layer: on the top of the viscous sublayer, where the
flow begins to feel the effect of turbulence, although laminar
influence is still present.

3. Overlap layer: on the top of the buffer layer, also known as
the inner layer, where it is gradually phasing out the near-
wall region

4. Outer layer: the edge of the boundary layer, the freestream
turbulence effects dominate.

x

1

2

3

4

Figure 4.6: Four regions of
the turbulent BL.

The viscous sublayer and the buffer layer are known as the near-wall region, which only comprises
about 15% of the total turbulent boundary thickness.

The character of the flow within these regions can be very different, e.g., the viscous effects are
dominating in the viscous sublayer, but the opposite in the outer layer. How does the velocity profile
vary within each region? The velocity-BL thickness relation is obtained by performing the dimensional
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analysis: define the dimensionless pairs 𝑦+ = 𝑦
𝑢∗

𝜈
, 𝑢+ =

𝑢

𝑢∗
, where 𝑢∗ =

√
𝜏𝑤/𝜌 is termed the friction

velocity (i.e., the velocity scale associated with the wall shear stress), 𝜈 is the kinematic viscosity, 𝑢
is the mean turbulence velocity. The plot of 𝑢+ versus 𝑦+ is shown in Figure 4.7.

Layer Range of 𝑦+ 𝑢+-𝑦+ Relation
viscous
sublayer

0 < 𝑦+ < 5 ∼ 8 𝑢+ ≈ 𝑦+

buffer layer
5 ∼ 8 < 𝑦+ < 30 ∼

70
(blended)

overlap
layer

30 ∼ 70 < 𝑦+ <
104 𝑢+ = 1/𝜅 ln 𝑦+ + 𝐵

outer
(wake)
region

𝑦+ > 104 not strictly
defined

(𝜅 and 𝐵 are both empirical constants.)

direction to pipe centreline

viscous

sublayer

buffer

layer

inner layer

experimental data

Figure4.7: Typical structure of the tur-
bulent velocity profile in a pipe. (Mun-
son et al.)

For the outer region, one commonly adopted relation to describe the velocity profile is the power-law
relation:

𝑢

𝑢𝑐
=

(
1 − 𝑟

𝑅

)1/𝑛
, (4.9)

where 𝑢𝑐 is the centreline velocity; the value of 𝑛 depends on Re, as the relation given out in Figure
4.8.

Figure 4.8: Exponent, 𝑛, for power-law velocity profiles. (Munson et al.)
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4.3 Energy Cascade in Turbulent Flow

 The mathematics in this section is optional and provided for further reading.

The progression, or breakdown of large eddies to small eddies, is referred to as the energy cascade.
Let 𝑘 (= 1

2𝑢
′
𝑖𝑢

′
𝑖) denotes the turbulence kinetic energy, 𝜀 denotes the dissipation rate of turbulence

kinetic energy,

Integral scale: the largest scale where the turbulence kinetic energy is generated. It can be
related to the size of the system (e.g., 10% ∼ 20% of the pipe diameter). The integral length 𝐿
and time 𝜏𝐿 scales are

𝐿 =
𝑘

3
2

𝜀
, 𝜏𝐿 =

𝑘

𝜀
.

Kolmogorov scale: the smallest scale which measures the size of the smallest eddies in the
flow regime. This is where the turbulent kinetic energy is dissipated via the molecular viscosity.
The Kolmogorov length 𝜂 and time 𝜏𝜂 scales are

𝜂 =

(
𝜈3

𝜀

) 1
4
, 𝜏𝜂 =

(
𝜈

𝜀

) 1
2
.

Taylor scale: the intermediate scale between the integral scale and Kolmogorov scale.

L

Kolmogorov

u' L

u'

Figure 4.9: Turbulent kinetic energy cascade as a function of wave number (∼ 1/size of eddies). (P.
Aleiferis.)

Example

When milk is poured into coffee, the moving milk and the surrounding coffee collide and create
an irregular motion that helps the two liquids mix quickly. Stirring with a spoon sets the whole
cup of coffee intomotion, forming a large swirl. This largemotion then breaks into smaller swirls,
which further spread the milk throughout the coffee, making the mixing fast and effective. This
is a typical example of a turbulent energy cascade!
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4.4 The Closure Problem

 This topic is optional and provided for further reading.

One key problem that remains unanswered is that the velocity fluctuation 𝑢′𝑖𝑢
′
𝑗 that appears in the

time-averaged form of the momentum equation is an unknown term. If we want to model or simulate
turbulence computationally, these shear stress terms must be resolved. How do we model the turbu-
lence then? We need an expression that bridges such unknown quantities to the known quantities,
and this is referred to as the closure problem.

Joseph Valentin Boussinesq (1842-1929) proposed that, instead of finding the Reynolds stresses, one
can alternatively find the turbulent viscosity. According to Boussinesq’s theory, the Reynolds stress
and the turbulent viscosity are linked through

𝑢′𝑖𝑢
′
𝑗 =

2
3
𝑘𝛿𝑖 𝑗 − 𝜈𝑡

[
𝜕𝑢 𝑗

𝜕𝑥𝑖
+ 𝜕𝑢𝑖
𝜕𝑥 𝑗

]
,

where 𝜈𝑡 is the turbulent viscosity; note that 𝜈𝑡 is a property of the turbulent flow, not the fluid (whereas
the kinematic viscosity 𝜈 is a property of fluid). This is known as the Boussinesq approximation.

The standard 𝑘-𝜖 turbulence model (Launder et. al., 1969), is a good example of turbulence mod-
elling based on the Boussinesq approximation. In the solution procedure, the turbulent viscosity is
calculated from the empirical relations. Subsequently, two additional transport equations are solved
– one for turbulent kinetic energy 𝑘, one for turbulence kinetic energy dissipation rate 𝜖 , in addition to
the continuity and momentum equations.
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4.5 Bernoulli’s Principle and Energy Equation

The Bernoulli’s principle The Bernoulli’s principle6 states that, for an incompressible, inviscid fluid,
if the flow is steady and laminar, the sum of pressure, kinetic and potential energy per unit volume is
the same between two points lying on the same streamline:

𝑝1 +
1
2
𝜌𝑢2

1 + 𝜌𝑔ℎ1 = 𝑝2 +
1
2
𝜌𝑢2

2 + 𝜌𝑔ℎ2, (4.10a)

Equation (4.10a) is known as the pressure form of the Bernoulli’s principle (Figure 4.10).

Reference Level

Figure4.10: Schematic of steady incompressible flow through a conduit between two cross-sections,
illustrating Bernoulli's principle.

Alternatively, dividing both sides of Equation (4.10a) by 𝜌𝑔 yields the same principle in the head form:

𝑝1
𝜌𝑔

+ 1
2𝑔
𝑢2

1 + ℎ1 =
𝑝2
𝜌𝑔

+ 1
2𝑔
𝑢2

2 + ℎ2, (4.10b)

where 𝑝/𝜌𝑔 is known as the pressure head, 𝑢2/2𝑔 is the velocity head, and ℎ is the potential (elevation)
head.

Comments

The term “head” in the context above refers to the energy per unit weight of fluid. Historically,
engineers measured energy as an equivalent column height of fluid – a ‘head’.

The Bernoulli’s principle can be interpreted as the perfect conservation of mechanical energy in fric-
tionless flow.

Pipe flow energy equation Yet, in reality, there is no perfect conservation of the mechanical energy.
Energy may dissipate by fluid friction with the rough walls, or due to a geometry change, such as
expansion, contraction, or bending along a pipe. This necessitates the inclusion of an additional loss
term to Equation (4.10), namely, the energy equation in the head form:

𝑝1
𝜌𝑔

+ 1
2𝑔
𝑢2

1 + ℎ1 =
𝑝2
𝜌𝑔

+ 1
2𝑔
𝑢2

2 + ℎ2 + ℎ𝐿 , (4.11a)

where ℎ𝐿 terms the total head loss, and can be further decomposed into the major head loss and
minor head loss:

ℎ𝐿 = ℎ𝐿,major + ℎ𝐿,minor.
6named after Daniel Bernoulli (1700-1782).

48



However, the terms “major” and “minor” do not necessarily reflect the relative importance of each type
of loss. The minor loss can be larger than the major loss.

Also note that one can simply convert Equation (4.11a) into its pressure form,

𝑝1 +
1
2
𝜌𝑢2

1 + 𝜌𝑔ℎ1 = 𝑝2 +
1
2
𝜌𝑢2

2 + 𝜌𝑔ℎ2 + 𝜌𝑔ℎ𝐿 , (4.11b)

where the term 𝜌𝑔ℎ𝐿 ≡ Δ𝑝𝐿 is the pressure drop due to the head loss.

Major head loss Themajor head loss is the energy loss due to fluid friction, described by theDarcy-
Weisbach equation,

ℎ𝐿,major = 𝑓
𝐿

𝐷

𝑈2

2𝑔
, (4.12)

where 𝑓 is the (dimensionless) Darcy friction factor, 𝐿 is the pipe length, 𝐷 is the pipe diameter, 𝑈
is the average velocity. For the fully developed, incompressible flow in a circular pipe, 𝑓 is typically
found as follows:

If the flow is laminar, 𝑓 = 64/Re;

If the flow is turbulent, 𝑓 is obtained from the Moody diagram7 (Figure 4.14), where the friction

factor is related to the Reynolds number and the relative wall roughness of the pipe, 𝑓
(
Re, 𝜀

𝐷

)
.

The major head loss leads to the pressure drop Δ𝑝𝐿,major = 𝜌𝑔ℎ𝐿,major.

Comments

For laminar flow, the pressure drop calculated with the friction factor 𝑓 = 64/Re coincides
with the Hagen-Poiseuille equation, where Δ𝑝 =

8𝜇𝐿𝑄
4𝜋𝑅4 .

For turbulent flow, even for smooth pipes (do not neglect this trace in Figure 4.14!) the
friction factor is not zero. This is a result of the non-slip boundary condition, which requires
fluid to stick to the solid surface it flows over.

For fully turbulent flow, i.e., Re is sufficiently high, 𝑓 is nearly independent to Re, but only
depends on the surface roughness. This is because the viscous sublayer gets thinner as
Re increases, hence, 𝜀 dominates any near-wall flow character.

Minor head loss Energy losses can also be associated with the geometrical features of a pipe.
Examples are the bends and valves in a pipe system or changes in diameter (expansion or contraction)
along the channel, which consequently alter the flow pattern and lead to the minor head loss. Such
losses are commonly described using an empirically derived loss coefficient, 𝐾𝐿,

ℎ𝐿,minor = 𝐾𝐿
𝑈2

2𝑔
, (4.13)

and by Δ𝑝 = 𝜌𝑔ℎ𝐿,minor,

Δ𝑝 =
1
2
𝜌𝑈2𝐾𝐿 . (4.14)

We shall now explore a few types of minor losses:

1. Pipes with a sudden, sharp-edged contraction or expansion: 𝐾𝐿 is related to the ratio of
the cross-sectional areas of two sections (Figure 4.11).

7named after Lewis F. Moody (1880-1953).

49



Comments

In fact, by simple conservation principles in mass, momentum, and energy, the loss coef-
ficient for the sudden expansion (SE) can be derived analytically:

𝐾𝐿,𝑆𝐸 =

(
1 − 𝐴1

𝐴2

)2
,

where 𝐴1 denotes the cross-sectional area upstream of the area change, and 𝐴2 denotes
the cross-sectional area downstream of the area change. However, the loss coefficient for
the sudden contraction (SC) could not be derived analytically, but fit experimentally, one
possible option is

𝐾𝐿,𝑆𝐶 ≈ 0.42
(
1 − 𝐴2

𝐴1

)
.

This prediction is valid up to the value 𝐴2/𝐴1 = 0.76.

2. Diffusers (a pipe device with a gradual expansion in diameter, used to decelerate the fluid flow):
𝐾𝐿 is related to the ratio of the cross-sectional areas of two sections, as well as the cone angle
of expansion (Figure 4.12).

Comments

The head loss in a diffuser arises from wall shear stress and from incomplete pressure
recovery (how efficiently the kinetic energy is converted to the static pressure) caused by
flow separation.

By Figure 4.12, 𝐾𝐿 drops due to reduced friction when 0◦ < 𝜃 < 15◦ – where a diffuser is
considered efficient; 𝐾𝐿 then increases sharply due to the flow separation, when the ad-
verse pressure gradients intensify; in this regime, the loss coefficient becomes comparable
to that of a sudden expansion.

3. Pipes with a bend: 𝐾𝐿 is linked to the ratio between the radius of pipe curvature and pipe
diameter, as well as the relative roughness values (Figure 4.13).

Comments

Note that Figure 4.11, Figure 4.12, and Figure 4.13 only apply to turbulent flow – You need to
calculate Re before reading values from the chart!
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(a) (b)

Figure 4.11: Loss coefficient for the sharp-edged (a) contraction, (b) expansion. (Munson et al.)

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
0 30 60 90

θ  , degrees

θ

120 150 180

V1 V2

hL = KL fixed
V___

2
1

2g

K
__

__
__

__
__

__
L

(1
–

A
1
/A

2
)2

A___2
A1

Figure 4.12: Loss coefficient for a typical diffuser. (Munson et al.)
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Figure 4.13: Loss coefficient for a pipe with a 90◦ bend. (Munson et al.)
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5 Problems Involving Scaling

5.1 Nondimensionalisation and Buckingham-Π Theorem

In fluid problems, the aim is to express a physical quantity in terms of the relevant input variables and
parameters in the problem (e.g. lengths and geometry, material properties of the fluid, velocities, …).
That is, we want to find a quantity 𝑌 in terms of 𝑘 input variables {𝑦1, 𝑦2, 𝑦3, …, 𝑦𝑘}.

𝑌 = 𝑓 (𝑦1, 𝑦2, . . . , 𝑦𝑘). (5.1)

The Buckingham-Π theorem states that, Equation (5.1) can be nondimensionalised into the form

𝑌 ∗ = 𝑓 ∗(𝑦∗1, 𝑦∗2, . . . , 𝑦∗𝑟 ), (5.2)

where 𝑌 ∗ denotes the nondimensionalised form of 𝑌 ; 𝑦∗1, 𝑦
∗
2, …, 𝑦∗𝑟 are the essential (minimum) ref-

erence dimensions required to describe 𝑦1, 𝑦2, …, 𝑦𝑘 . Note that 𝑟 ≤ 𝑘, consequently, there will be
(𝑘 − 𝑟) independent dimensionless products (Π groups).

Π1 = 𝜙(Π2,Π3, ...Π𝑘−𝑟 ). (5.3)

Comments

Nondimensionalising is a powerful tool in fluid mechanics for two main reasons:

Efficiency: The number of parameters in the problem decreases. Thus each set of pa-
rameters in the nondimensionalised system corresponds to a whole family of parameter
values in the dimensional system. Thus every experimental result or numerical simulation
enables us to understand the system for a whole range of sets of parameter values (rather
than just one set of parameter values). In turn this either decreases the number of experi-
ments or simulations that need to be performed and/or increases our level of understanding
about the problem.

Simplification: If the appropriate scalings are adopted, it often happens that one of the
nondimensional parameters is particularly large or particularly small. This usually means
that certain terms in the equations are dominant and others may be neglected (or at least
assumed to be small). Neglecting unimportant terms can mean we can make significantly
more progress in our analysis of the problem than would otherwise be possible. We will
see some examples of this in the rest of this section.

Reference Dimensions The dimensions of all the quantities 𝑦1, …, 𝑦𝑘 are written as combinations
of reference dimensions, 𝑦∗1, …, 𝑦∗𝑟 . The most common reference dimensions are [𝑀] for mass, [𝐿]
for length, and [𝑇] for time.

For example, the dimensions for the velocity can be written as [𝐿𝑇−1] (cf. length/time). Alternatively,
in some cases (e.g., In subsection 5.2), the dimensions for the velocity is written as [𝑈] which denotes
the velocity scale.

The dimensions of the common quantities are summarised in the following table.
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Quantity Symbol Dimensions Quantity Symbol Dimensions

Acceleration 𝑎 [𝐿1𝑇−2] Surface tension 𝜎𝑠 [𝑀1𝑇−2]
Angle 𝜃, 𝜙, etc. 1 (none) Velocity 𝑈 [𝐿1𝑇−1]
Density 𝜌 [𝑀1𝐿−3] Viscosity 𝜇 [𝑀1𝐿−1𝑇−1]
Force 𝐹 [𝑀1𝐿1𝑇−2] Volume flow rate 𝑄 [𝐿3𝑇−1]
Frequency 𝑓 [𝑇−1] Pressure 𝑝 [𝑀1𝐿−1𝑇−2]

Example: Applying The Buckingham-Π theorem

Objective Perform the dimensional analysis of the scenario where the pressure drops per
unit length along a smooth pipe.

Step 1 List all relevant variables in the objective equation to be nondimensionalised. Here,

Δ𝑝𝑙 = 𝑓 (𝐷, 𝜌, 𝜇,𝑈),

where the pressure drop Δ𝑝𝑙 is a function of the pipe diameter 𝐷, the density 𝜌, the
(dynamic) viscosity 𝜇, and velocity 𝑈.

Step 2 List the dimensions of the variables. Let [𝑀] denotes the dimension of mass, [𝐿] denotes
the dimension of length, [𝑇 ] denotes the dimension of time,

Δ𝑝𝑙 � [𝑀𝐿−1𝑇−2], 𝜇 � [𝑀𝐿−1𝑇−1]
𝐷 � [𝐿], 𝑈 � [𝐿𝑇−1]
𝜌 � [𝑀𝐿−3]

There are 𝑘 = 5 variables and 𝑟 = 3 reference dimensions, we conclude there will be
𝑘 − 𝑟 = 2 dimensionless groups.

Step 3 Suppose the first group involves Δ𝑝𝑙, 𝜌, 𝑈 and 𝐷. Let 𝒂, 𝒃, 𝒄, 𝒅 denote 4 constants to be
determined,

𝐷𝒂𝜌𝒃𝑉𝒄Δ𝑝𝒅𝑙 =⇒ [𝐿]𝒂 [𝑀𝐿−3]𝒃 [𝐿𝑇−1]𝒄 [𝑀𝐿−1𝑇−2]𝒅 � [𝐿]0 [𝐹]0 [𝑇]0 .

Balance of [𝑀], [𝐿], [𝑇] would give the simultaneous equations

(mass) 𝒃 + 𝒅 = 0,
(length) 𝒂 − 3𝒃 + 𝒄 − 𝒅 = 0,
(time) − 𝒄 − 2𝒅 = 0.

(3 equations with 4 unknowns⇒ the equation system is underdetermined, we will not be
able to explicitly solve the numerical values of 4 parameters, but at least we will know
the relations between 𝑎, 𝑏, 𝑐, 𝑑.)

resulting in the following relations: 𝒂 = 0, 𝒃 = −𝒅, 𝒄 = −2𝒅. Hence, with 𝒅 = −1, −→ 𝒂 = 0,
𝒃 = 1, 𝒄 = 2,

𝐷0𝜌1𝑈2Δ𝑝−1
𝑙 ≡

(
𝜌𝑈2

Δ𝑝𝑙

)
is dimensionless, =⇒ Π1 =

(
𝜌𝑈2

Δ𝑝𝑙

)
.

(Although we supposed that 𝐷 might get involved in the first Π group, but by 𝑎 = 0, Π1 is
invariant of 𝐷.)
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Step 4 Similarly, the second term involves 𝜇, follow the same rule, this yields Π2 =
𝜇

𝜌𝐷𝑈
, which

is 1/Re.

Step 5 Hence, we can express the result of the dimensional analysis as

𝜌𝑈2

Δ𝑝𝑙
= 𝜙

(
𝜇

𝜌𝐷𝑈

)
.

It expresses the idea that the dimensionless pressure drop solely depends on the ratio of
viscous force to the inertial force. In other words, the flow-induced pressure loss scales
with Re.

Comments

By Δ𝑝𝑙 = 𝑓 (𝐷, 𝜌, 𝜇,𝑈), the conventional way to investigate Δ𝑝𝑙 with each parameter re-
quires holding the others constant; i.e., when studying the Δ𝑝𝑙-𝐷 relation, 𝜌, 𝜇, 𝑈 must be
kept constant. If we make one plot for each parameter, there will be 4 plots in total.

By Buckingham-Π theorem,
𝜌𝑈2

Δ𝑝𝑙
= 𝜙

(
𝜇

𝜌𝐷𝑈

)
, we know the flow-induced pressure loss

solely scales with Re, and all above information can be encapsulated into 1 plot.

This example shows how the dimensional analysis reduces the complexity, cost, and time
required to determine the relationship between a physical quantity and the other variables.

However, we should note that each dimensionless group must hold a meaningful physical
interpretation.

Summary of common variables and dimensionless groups in fluid mechanics:

Variables: Acceleration of gravity, 𝑔; Bulk modulus, 𝐸𝑣; Characteristic length, 𝐿; Density, 𝜌;
Frequency of oscillating flow, 𝜔; Pressure, 𝑝; Speed of sound, 𝑐; Surface tension, 𝜎𝑠 ; Velocity, 𝑈.

Dimensionless
groups Name Interpretation Types of Applications

𝜌𝑈𝐿/𝜇 Reynolds number,
Re

inertia force
viscous force

Generally of importance in all types
of fluid dynamics problems

𝑈/
√
𝑔𝐿 Froude number, Fr inertia force

gravitational force Flow with a free surface

𝑝/𝜌𝑈2 Euler number, Eu pressure force
inertia force

Problems in which pressure, or
pressure differences, are of interest

𝑈/𝑐 Mach number, Ma inertia force
compressibility force

Flows in which the compressibility
of the fluid is important

𝜔𝐿/𝑈 Strouhal number, St inertia (local) force
inertia (convective) force

Unsteady flow with a characteristic
frequency of oscillation

𝜌𝑈2𝐿/𝜎𝑠 Weber number, We inertia force
surface tension force

Problems in which surface tension
is important
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5.2 The Dimensionless Navier-Stokes Equations

In this section, we investigate common ways of nondimensionalising problems in biological fluid me-
chanics. Assuming the body forces are insignificant, the Navier-Stokes and continuity equations (2.7)
and (2.3) are

𝜕u
𝜕𝑡

+ (u · ∇)u = − 1
𝜌
∇𝑝 + 𝜈∇2u, ∇ · u = 0. (5.4)

It is often the case that a problem in fluid mechanics has a typical (characteristic) length scale, 𝐿, and
a typical (characteristic) fluid speed, 𝑈. We naturally obtain the following dimensionless variables:

x∗ =
x
𝐿
, u∗ =

u
𝑈
, 𝑡∗ =

𝑡

𝐿/𝑈 , 𝑝∗ =
𝑝

𝑃0
, (5.5)

where 𝑃0 is the characteristic pressure scale to be determined later. Note that we use superscript * to
indicate corresponding dimensionless quantities. On substituting these into equations 5.4 we obtain

𝑈2

𝐿

(
𝜕u∗

𝜕𝑡∗
+ (u∗ · ∇∗)u∗

)
= − 𝑃0

𝜌𝐿
∇∗𝑝∗ + 𝜈𝑈

𝐿2 ∇
∗2u∗,

𝑈

𝐿
∇∗ · u∗ = 0. (5.6)

Note that the differential operator ∇ must be nondimensionalised and also the derivative with respect
to time. Dividing equations (5.6) respectively by the factor in front of the viscous term and by 𝑈/𝐿,
they become

Re
(
𝜕u∗

𝜕𝑡∗
+ (u∗ · ∇∗)u∗

)
= − 𝑃0

(𝜇𝑈/𝐿)∇
∗𝑝∗ + ∇∗2u∗, ∇∗ · u∗ = 0. (5.7)

where Re = 𝑈𝐿/𝜈 is the Reynolds number.

We still need to choose the pressure scale 𝑃0, as there is no natural scaling for pressure. Usually,
we assume that the pressure gradient plays an important role in the problem, meaning that it is of
the same order of magnitude as the largest term in the equation; i.e., it depends on whether viscous
effects or inertial effects are more dominant.

𝑃0 =
𝜇𝑈

𝐿
max (1,Re) . (5.8)

In the case that the Reynolds number is very large or very small, this leads to considerable simplifi-
cation of the equations, which will be discussed in the next sections.

Comments

Since all the starred variables have an order of magnitude 1, O(1), we can see from (5.7) that
a physical interpretation of the Reynolds number equals the ratio of the typical acceleration of
fluid particles to the typical viscous force per unit mass.

Scaling for low-Reynolds-number flows (Re � 1) In this case (5.8) gives 𝑃0 = 𝜇𝑈/𝐿, and Equa-
tion (5.7) becomes

Re
(
𝜕u∗

𝜕𝑡∗
+ (u∗ · ∇∗)u∗

)
= −∇∗𝑝∗ + ∇∗2u∗, ∇∗ · u∗ = 0. (5.9)

Since the Reynolds number is very small, to leading order we may neglect the L.H.S. of the equation,
and the Navier-Stokes equation reduces to the Stokes equation:

∇∗2u∗ = ∇∗𝑝∗, ∇∗ · u∗ = 0. (5.10)
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Comments

The Stokes equation is much simpler to solve than the Navier-Stokes equation, primarily
because it is linear.

The Stokes equation can be rewritten using in terms of the vorticity: ∇2𝝎 = 0 - This is often
simpler to find the general solution! The derivation follows:

1. Redimensionalise the Stokes equation, yielding

𝜇∇2u = ∇𝑝, ∇ · u = 0.

2. Define the vorticity as 𝝎 = ∇ × u

𝜇∇2u = −𝜇∇ × 𝝎 due to ∇ × 𝝎 = ∇ × (∇ × u) =���∇ · u − ∇2u.

3. Further, take the curl of 𝜇∇2u = ∇𝑝:

∇ × ∇𝑝︸  ︷︷  ︸
“curl of grad
is zero”

= ∇ × (𝜇∇2u) =⇒ 0 = −𝜇∇ × (∇ × 𝝎)

0 = −𝜇[ ∇(∇ · 𝝎) − ∇2𝝎︸              ︷︷              ︸
by: ∇×(∇×A)=∇(∇·A)−∇2A

]

0 = −𝜇[∇(∇ · ∇ × u)︸          ︷︷          ︸
“div of curl
is zero”

−∇2𝝎]

0 = ∇2𝝎.

which can give a method to solve the problem (as discussed in Section 5.5).

Scaling for high-Reynolds-number flows (Re � 1) In this case, (5.8) gives 𝑃0 = Re · 𝜇𝑈/𝐿 = 𝜌𝑈2,
and Equation (5.7) becomes

𝜕u∗

𝜕𝑡∗
+ (u∗ · ∇∗)u∗ = −∇∗𝑝∗ + 1

Re
∇∗2u∗, ∇∗ · u∗ = 0. (5.11)

Since the Reynolds number is very large, to leading order we may neglect the viscous term, and the
Navier-Stokes equation reduces to

𝜕u∗

𝜕𝑡∗
+ (u∗ · ∇∗)u∗ = −∇∗𝑝∗, ∇∗ · u∗ = 0. (5.12)

Thus, to leading order, the fluid behaves like an inviscid fluid.

Comments

Equations (5.12) represents a different type of differential equation from the scaled Navier–
Stokes equations (5.11), since the viscous term in (5.11) is the term containing the highest
order derivatives. In the absence of the viscous term, it is not possible to impose the usual
number of boundary conditions. It is usual merely to impose no-penetration (instead of
full no-slip) boundary conditions (which is the same as what we would do with an inviscid
fluid). Thus we require that no fluid flows through an impermeable wall, that is u∗

𝑟 · n = 0,
where u𝑟 is the fluid velocity minus the wall velocity and n is the normal vector to the wall.
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In practice, a thin boundary layer develops near the wall:

At the wall, the fluid velocity equals the velocity of the wall (which is zero in the case
of a fixed wall), due to the no-slip boundary conditions.

At the edge of the boundary layer, the fluid velocity equals the bulk velocity (that is
the velocity we calculated using the inviscid approximation with the no-penetration
boundary conditions).

Within the boundary layer there are typically large gradients in the fluid velocity as it
changes between these values over a short distance.

If we require the details of the flow within the boundary layer (for example if we need to
calculate the shear stress that the fluid flow induces on the wall), we can use the following
method:

Away from the walls, we solve the simplified Equation (5.12).

Within the boundary layers, we cannot neglect the viscous terms, but we can make
scalings that simplify the equations considerably. This is because the boundary layer
is very thin, so we assume that the coordinate variable perpendicular to the wall is
much smaller than the coordinate parallel to the wall. The equations to be solved
within the boundary layer will be derived in Section 5.4. We then apply no-slip bound-
ary conditions at the wall, and matching conditions at the edge of the boundary layer,
which tells us both the width of the boundary layer and the flow profile within it.

In the rest of this section, we consider a few particular problems in fluid mechanics in which using
dimensional analysis enables us to either find a solution or to make significant simplifications of the
governing equations. In particular:

Lubrication flows (Section 5.3): occurs when the domain of the fluid is long and thin, such that
velocity gradients normal to the boundaries dominate those in the streamwise direction, and the
flow is governed primarily by a balance between viscous stresses and pressure gradients.

Boundary layer flows (Section 5.4): occur when Re � 1, where viscous effects are confined
to thin regions in the vicinity of the boundary. Outside this viscous dominant region, the flow is
governed by the inertial effects.

Stokes flows (Section 5.5): occur when Re � 1, where the inertial effects may be neglected
relative to viscous forces, so that the flow is governed by a balance between viscous stresses
and pressure gradients.
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5.3 Lubrication Theory

 This topic is optional and provided for further reading.

Motivation The lubrication theory is a technique used to find an approximate solution when the do-
main of the fluid is long and thin. We use it because it results in a considerable simplification of the
Navier-Stokes equations. The basic assumption is that fluid flow properties vary much more quickly
across the layer than along the layer.

One motivation for this type of analysis is that it can be very difficult and costly to simulate long and
thin regions numerically because flow properties change so rapidly across the layer. However, the
thinner the region becomes, the more accurate the approximations presented in this section become,
and thus, it becomes a method of choice in extreme cases.

Derivation

Flowing fluid

𝑥

𝑦
Flow profile

(typical speed 𝑈)

𝑦 = 𝑦2(𝑡, 𝑥) = 𝑦1(𝑡, 𝑥) + ℎ(𝑡, 𝑥)

𝑦 = 𝑦1(𝑡, 𝑥)

Typical gap
width ℎ0

𝐿

Step 1: Choosing the characteristic (scaled) variables For simplicity, we work in two dimensions
(𝑥, 𝑦), with the following assumptions and constraints:

The fluid flows in a channel whose typical width ℎ0 in the 𝑦-direction is much smaller than the
length 𝐿 in the 𝑥-direction; their ratio 𝜀 = ℎ0/𝐿 � 1;

The side walls are at 𝑦 = 𝑦1(𝑡, 𝑥) and 𝑦 = 𝑦2(𝑡, 𝑥), with the channel height ℎ = 𝑦2 − 𝑦1 and ℎ0
being a typical value of the function ℎ;

𝑈 is the characteristic velocity along the channel in the 𝑥-direction.

Therefore, the scaled variables are chosen as

𝑥 = 𝐿𝑥∗, 𝑦 = ℎ0𝑦
∗, 𝑡 =

𝐿

𝑈
𝑡∗, 𝑝 = 𝑝0𝑝

∗.

The only exception we will further discuss below is the pressure scale 𝑝0, as there is no natural scaling
to the pressure term.

Since 𝑈 is the characteristic velocity along the 𝑥-direction, meaning that typical changes in the 𝑥-
component of velocity are of order 𝑈 and hence a typical value of 𝜕𝑢/𝜕𝑥 is of order 𝑈/𝐿. By the
continuity equation:

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣
𝜕𝑦

= 0,

the order of magnitude of
𝜕𝑢

𝜕𝑥
must be balanced by the order of magnitude of

𝜕𝑣

𝜕𝑦
- hence, a typical

value of 𝑣 is of order ℎ0𝑈/𝐿. Thus we set

𝑢 = 𝑈𝑢∗, 𝑣 =
ℎ0𝑈

𝐿
𝑣∗.
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Step 2: nondimensionalise the continuity equation We substitute the scaled variables into the
continuity and Navier-Stokes equations to get the system in terms of the nondimensional variables.
The continuity equation gives

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣
𝜕𝑦

= 0 ⇒ 𝑈

𝐿

𝜕𝑢∗

𝜕𝑥∗
+ ℎ0𝑈

ℎ0𝐿

𝜕𝑣∗

𝜕𝑦∗
= 0 ⇒ 𝜕𝑢∗

𝜕𝑥∗
+ 𝜕𝑣

∗

𝜕𝑦∗
= 0. (5.13)

Step 3: nondimensionalise the 𝑥-component of the N-S equation The 𝑥-component of the N-S
equation becomes

𝜌

(
𝜕𝑢

𝜕𝑡
+ 𝑢 𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦

)
= −𝜕𝑝

𝜕𝑥
+ 𝜇

(
𝜕2𝑢

𝜕𝑥2 + 𝜕
2𝑢

𝜕𝑦2

)
⇒ 𝜌

(
𝑈2

𝐿

𝜕𝑢∗

𝜕𝑡∗
+ 𝑈

2

𝐿
𝑢∗
𝜕𝑢∗

𝜕𝑥∗
+ ℎ0𝑈

2

ℎ0𝐿
𝑣∗
𝜕𝑢∗

𝜕𝑦∗

)
= − 𝑝0

𝐿

𝜕𝑝∗

𝜕𝑥∗
+ 𝜇

(
𝑈

𝐿2
𝜕2𝑢∗

𝜕𝑥∗2
+ 𝑈

ℎ2
0

𝜕2𝑢∗

𝜕𝑦∗2

)
.

Dividing by the coefficient of the viscous term 𝜕2𝑢∗/𝜕𝑦∗2, that is, dividing by 𝜇𝑈/ℎ2
0, this becomes

𝜀2Re
(
𝜕𝑢∗

𝜕𝑡∗
+ 𝑢∗ 𝜕𝑢

∗

𝜕𝑥∗
+ 𝑣∗ 𝜕𝑢

∗

𝜕𝑦∗

)
= −

ℎ2
0𝑝0

𝜇𝑈𝐿

𝜕𝑝∗

𝜕𝑥∗
+ 𝜀2 𝜕

2𝑢∗

𝜕𝑥∗2
+ 𝜕

2𝑢∗

𝜕𝑦∗2
,

where Re = 𝜌𝑈𝐿/𝜇 is the Reynolds number of the flow. We call the parameter 𝜀2Re the reduced
Reynolds number associated with the problem, and typically in lubrication theory we assume it is
small 𝜀2Re � 1. If we also neglect the term whose coefficient is 𝜀2, which is expected to be small, we
obtain

0 = −
ℎ2

0𝑝0

𝜇𝑈𝐿

𝜕𝑝∗

𝜕𝑥∗
+ 𝜕

2𝑢∗

𝜕𝑦∗2
. (5.14)

Step 4: nondimensionalise the 𝑦-component of the N-S equation Similarly, we nondimension-
alise the 𝑦-component of the N-S equations as

𝜌

(
𝜕𝑣

𝜕𝑡
+ 𝑢 𝜕𝑣

𝜕𝑥
+ 𝑣 𝜕𝑣

𝜕𝑦

)
= −𝜕𝑝

𝜕𝑦
+ 𝜇

(
𝜕2𝑣

𝜕𝑥2 + 𝜕
2𝑣

𝜕𝑦2

)
⇒ 𝜌

(
ℎ0𝑈

2

𝐿2
𝜕𝑢∗

𝜕𝑡∗
+ ℎ0𝑈

2

𝐿2 𝑢∗
𝜕𝑢∗

𝜕𝑥∗
+
ℎ2

0𝑈
2

ℎ0𝐿2 𝑣
∗ 𝜕𝑢

∗

𝜕𝑦∗

)
= − 𝑝0

ℎ0

𝜕𝑝∗

𝜕𝑥∗
+ 𝜇

(
ℎ0𝑈

𝐿3
𝜕2𝑢∗

𝜕𝑥∗2
+ ℎ0𝑈

ℎ2
0𝐿

𝜕2𝑢∗

𝜕𝑦∗2

)
.

If we divide by the same coefficient (for comparison with the 𝑥-component), 𝜇𝑈/ℎ2
0, this becomes

𝜀3Re
(
𝜕𝑣∗

𝜕𝑡∗
+ 𝑢∗ 𝜕𝑣

∗

𝜕𝑥∗
+ 𝑣∗ 𝜕𝑣

∗

𝜕𝑦∗

)
= −ℎ0𝑝0

𝜇𝑈

𝜕𝑝∗

𝜕𝑦∗
+ 𝜀3 𝜕

2𝑢∗

𝜕𝑥∗2
+ 𝜀 𝜕

2𝑢∗

𝜕𝑦∗2
.

We can neglect both the inertial terms, whose coefficient is 𝜀3Re, and the term with coefficient 𝜀3, as
these are both small compared to the term whose coefficient is 𝜀. This gives

0 = −ℎ0𝑝0
𝜇𝑈

𝜕𝑝∗

𝜕𝑦∗
+ 𝜀 𝜕

2𝑣∗

𝜕𝑦∗2
. (5.15)

Step 5: Choosing the the pressure scale 𝑝0 We have reduced the problem to the three nondimen-
sional equations (5.13), (5.14) and (5.15), and still need to choose the pressure scale 𝑝0. Inspecting
Equation (5.14) and (5.15), the scales that give balances in these equations are when 𝑝0 is of order
𝜇𝑈𝐿/ℎ2

0 (balance in (5.14)) or order 𝜇𝑈/ℎ0 (balance in (5.15)). Thus there are five categories for the
choice of the scale for 𝑝0 (𝑝0 � 𝜇𝑈𝐿/ℎ2

0, 𝑝0 ∼ 𝜇𝑈𝐿/ℎ2
0, 𝜇𝑈/ℎ0 � 𝑝0 � 𝜇𝑈𝐿/ℎ2

0, 𝑝0 ∼ 𝜇𝑈/ℎ0 and
𝑝0 � 𝜇𝑈/ℎ0). In the following, we look at each of these choices, and their effect on Equations (5.14)
and (5.15):
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1. 𝑝0 � 𝜇𝑈𝐿/ℎ2
0: Equations (5.14) and (5.15) become dominated by the pressure gradient terms;

thus to leading order

0 = −
ℎ2

0𝑝0

𝜇𝑈𝐿

𝜕𝑝∗

𝜕𝑥∗
⇒ 𝜕𝑝∗

𝜕𝑥∗
= 0,

0 = −ℎ0𝑝0
𝜇𝑈

𝜕𝑝∗

𝜕𝑦∗
⇒ 𝜕𝑝∗

𝜕𝑦∗
= 0,

and hence 𝑝∗ is uniform in space. Since only the pressure gradient comes into play in fluid
mechanics, this shows this scaling is the wrong choice, as to leading order there is no pressure
gradient.

2. 𝑝0 ∼ 𝜇𝑈𝐿/ℎ2
0: For simplicity let us choose 𝑝0 = 𝜇𝑈𝐿/ℎ2

0. Then Equations (5.14) and (5.15)
respectively become

0 = −𝜕𝑝
∗

𝜕𝑥∗
+ 𝜕

2𝑢∗

𝜕𝑦∗2
, 0 = −1

𝜀

𝜕𝑝∗

𝜕𝑦∗
+ 𝜀 𝜕

2𝑣∗

𝜕𝑦∗2
. (5.16)

The term multiplying 𝜀 in the 𝑦-equation above can therefore be ignored, leading to

0 = −𝜕𝑝
∗

𝜕𝑦∗
, (5.17)

and therefore 𝑝 depends on 𝑥 and 𝑡 only. This scaling does not lead to a contradiction and is
thus a possibility.

3. 𝑝0 � 𝜇𝑈𝐿/ℎ2
0 (we can group the final three choices as we only need to consider Equation (5.14)):

Equation (5.14) is now dominated by the viscous term, and thus to leading order

0 =
𝜕2𝑢∗

𝜕𝑦∗2
.

This has general solution 𝑢∗ = 𝑐1(𝑡∗, 𝑥∗)𝑦∗+𝑐2(𝑡∗, 𝑥∗), where 𝑐1 and 𝑐2 are functions of integration.
We then apply no-slip boundary conditions at the side walls 𝑦 = 𝑦1 and 𝑦 = 𝑦2 of the channel. If
the side walls are fixed, this will force both 𝑐1 and 𝑐2 to be equal to zero, as there are two zero
boundary conditions on the two sides. In turn, this means 𝑢∗ = 0, which is not possible as we
assumed that 𝑢∗ has an order of magnitude 1 when choosing the scale 𝑈. In turn, this means
that this choice of scaling is incorrect. Even if one or both side walls are moving, the boundary
conditions completely determine the values of 𝑐1 and 𝑐2, meaning that the velocity can’t have
the correct scale.

Thus, we are left with the only consistent choice 𝑝0 = 𝜇𝑈𝐿/ℎ2
0, and we have the reduced set of

equations, derived from (5.13) and (5.16):

𝜕𝑢∗

𝜕𝑥∗
+ 𝜕𝑣

∗

𝜕𝑦∗
= 0, 0 = −𝜕𝑝

∗

𝜕𝑥∗
+ 𝜕

2𝑢∗

𝜕𝑦∗2
, (5.18)

where 𝑝∗ is independent of 𝑦∗. Redimensionalising these, we get the lubrication equations

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣
𝜕𝑦

= 0, 0 = −𝜕𝑝
𝜕𝑥

+ 𝜇𝜕
2𝑢

𝜕𝑦2 , (5.19)

with 𝑝 independent of 𝑦.
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Step 6: Applying the boundary conditions Since 𝑝 is a function of 𝑥 only (and is independent of
𝑦), we can integrate Equation (5.19b) with respect to 𝑦 twice to get

𝑢 =
1

2𝜇
𝜕𝑝

𝜕𝑥
𝑦2 + 𝐴𝑦 + 𝐵,

where 𝐴(𝑡, 𝑥) and 𝐵(𝑡, 𝑥) are functions of integration that are set by the boundary conditions on the
two side walls, 𝑢 = 𝑢1 at 𝑦 = 𝑦1 and 𝑢 = 𝑢2 at 𝑦 = 𝑦2:

𝑢1 =
1

2𝜇
𝜕𝑝

𝜕𝑥
𝑦2

1 + 𝐴𝑦1 + 𝐵, 𝑢2 =
1

2𝜇
𝜕𝑝

𝜕𝑥
𝑦2

2 + 𝐴𝑦2 + 𝐵,

which can be solved simultaneously to give expressions for 𝐴 and 𝐵:

𝐴 =
𝑢2 − 𝑢1
ℎ

− (𝑦1 + 𝑦2)
2𝜇

𝜕𝑝

𝜕𝑥
, 𝐵 =

𝑦2𝑢1 − 𝑦1𝑢2
ℎ

+ 𝑦1𝑦2
2𝜇

𝜕𝑝

𝜕𝑥
,

and hence
𝑢 =

𝑢1(𝑦2 − 𝑦) + 𝑢2(𝑦 − 𝑦1)
ℎ

− 1
2𝜇

𝜕𝑝

𝜕𝑥
(𝑦2 − 𝑦) (𝑦 − 𝑦1) . (5.20)

Thus 𝑢 is composed of a linear part that satisfies the boundary conditions (the first term) plus a
parabolic part driven by the pressure gradient (the second term).

Step 7: Finding 𝜕𝑝/𝜕𝑥 There are two ways to proceed to find 𝜕𝑝/𝜕𝑥:

1. If an expression for 𝑣 is required, we can solve Equation (5.19) for 𝑣:

𝜕𝑣

𝜕𝑦
=

1
ℎ2
𝜕ℎ

𝜕𝑥
(𝑢1(𝑦2 − 𝑦) + 𝑢2(𝑦 − 𝑦1))

− 1
ℎ

(
𝜕𝑢1
𝜕𝑥

(𝑦2 − 𝑦) + 𝑢1
𝜕𝑦2
𝜕𝑥

+ 𝜕𝑢2
𝜕𝑥

(𝑦 − 𝑦1) − 𝑢2
𝜕𝑦1
𝜕𝑥

)
+ 1

2𝜇
𝜕2𝑝

𝜕𝑥2 (𝑦2 − 𝑦) (𝑦 − 𝑦1) +
1

2𝜇
𝜕𝑝

𝜕𝑥

(
𝜕𝑦2
𝜕𝑥

(𝑦 − 𝑦1) −
𝜕𝑦1
𝜕𝑥

(𝑦2 − 𝑦)
)
, (5.21)

which can then be integrated (as it is an explicit function of 𝑦) to give an expression with one
constant of integration. The expressions get too complicated to write down now, though they
are typically simpler in the particular case that is to be considered. There are two boundary
conditions to be satisfied on 𝑣 at the side walls: 𝑣 = 𝑣1 at 𝑦 = 𝑦1 and 𝑣 = 𝑣2 at 𝑦 = 𝑦2. One
determines the constant of integration, whilst the other boundary condition leads to a second-
order ordinary differential equation for 𝑝. The red blood cell example below shows how this
method works.

2. Alternatively, if we don’t require an explicit expression for 𝑣, we integrate the continuity equation
across the channel:

0 =
∫ 𝑦2

𝑦1

(
𝜕𝑢

𝜕𝑥
+ 𝜕𝑣
𝜕𝑦

)
d𝑦

=
1
2
(𝑢1 − 𝑢2)

(
𝜕𝑦1
𝜕𝑥

+ 𝜕𝑦2
𝜕𝑥

)
+ ℎ

2

(
𝜕𝑢1
𝜕𝑥

+ 𝜕𝑢2
𝜕𝑥

)
− ℎ3

12𝜇
𝜕2𝑝

𝜕𝑥2 − ℎ2

4𝜇
𝜕𝑝

𝜕𝑥

𝜕ℎ

𝜕𝑥
+ 𝑣2 − 𝑣1,

and thus we get a second-order differential equation for 𝑝 (which should be the same as the
one obtained by the first method):

𝜕2𝑝

𝜕𝑥2 + 3
ℎ

𝜕ℎ

𝜕𝑥

𝜕𝑝

𝜕𝑥
+ 12𝜇

ℎ3 (𝑣1 − 𝑣2) + 6𝜇
ℎ3 (𝑢2 − 𝑢1)

(
𝜕𝑦1
𝜕𝑥

+ 𝜕𝑦2
𝜕𝑥

)
− 6𝜇
ℎ2

(
𝜕𝑢1
𝜕𝑥

+ 𝜕𝑢2
𝜕𝑥

)
= 0. (5.22)

Either way, we end up with a second-order differential equation (5.22) for 𝑝, for which we should know
all the coefficients from consideration of the boundary conditions. We solve this and apply boundary
conditions at the ends of the channel to determine the unknown constants of integration.
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Comments

This method was done in two dimensions, but can be straightforwardly extended to three
dimensions.

In practice in a real problem, start from Equations (5.19) (or similar). These equations
would either be given in a question, or you would have to work through guided steps to
derive them (see examples in past papers). The algebra can get slightly hairy at times, but
the method is otherwise standard.

When doing a real problem, both the value of 𝜀 and that of the reduced Reynolds number
must be checked before assuming that the equations of lubrication theory hold. If they are
small, the relative error made in making this assumption is the greater of the two values of
𝜀2 and the reduced Reynolds number.

If the reduced Reynolds number is slightly larger, that is 𝜀2Re � 1, but not small enough
that the inertial terms can be neglected, then we can improve the accuracy using a se-
ries expansion method, as described in Section 5.2, to find the velocity. We return to the
governing equations before we removed any terms: (5.13), (5.3) and (5.3). We substitute
the pressure scale 𝑝0 = 𝜇𝑈𝐿/ℎ2

0, and then remove terms that are multiplied by a factor of
order 𝜀2 with respect to the dominant term in each equation. This gives the equations

𝜕𝑢∗

𝜕𝑥∗
+ 𝜕𝑣

∗

𝜕𝑦∗
= 0, (a)

𝜀2Re
(
𝜕𝑢∗

𝜕𝑡∗
+ 𝑢∗ 𝜕𝑢

∗

𝜕𝑥∗
+ 𝑣∗ 𝜕𝑢

∗

𝜕𝑦∗

)
= −𝜕𝑝

∗

𝜕𝑥∗
+ 𝜕

2𝑢∗

𝜕𝑦∗2
, (b)

0 = −𝜕𝑝
∗

𝜕𝑦∗
. (c)

We set

𝑢∗ =𝑢∗0 + 𝜀2Re 𝑢∗1 +
(
𝜀2Re

)2
𝑢∗2 + . . . ,

𝑣∗ =𝑣∗0 + 𝜀2Re 𝑣∗1 +
(
𝜀2Re

)2
𝑣∗2 + . . . ,

𝑝∗ =𝑝∗0 + 𝜀2Re 𝑝∗1 +
(
𝜀2Re

)2
𝑝∗2 + . . . .

Equation (c) gives us that all the 𝑝∗𝑖 ’s are independent of 𝑦∗. Then, solving for 𝑢∗0 from
Equation (b), 𝑣∗0 from (a), 𝑢∗1 from (b), 𝑣∗1 from (a), etc in that order, we obtain the terms in
the series.
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Example: red blood cell

𝑦

𝑥

𝑣

𝑢

Cell travelling through capillary

𝑦 = ℎ(𝑥)

𝐿

Cell
velocity
𝑈

Enlarged view of shaded box

Figure 5.1: Example of a scenario where lubrication theory may be applied. A cell moves
steadily with speed𝑈 along a vessel with a narrow gap at the walls.

We consider a red blood cell moving along the capillary shown in Figure 5.1 and find the flow
and pressure in the blood plasma filling the narrow gap between the cell and the vessel wall.
We make the following assumptions:

The cell travels with constant velocity 𝑈 parallel to the vessel wall.

The flow is steady in the frame travelling with the cell (the cell travels as if it were rigid).
Usually, this is a good approximation, although, for example it excludes the period just
after the cell has entered the capillary.

The gap is sufficiently narrow that we can model the wall of the vessel as a flat platea.

For simplicity wework in Cartesian coordinates, we put the vessel wall at 𝑦 = 0 and the boundary
of the cell at 𝑦 = ℎ, so that ℎ is the width of the gap. The boundary conditions are

At 𝑦 = 0: 𝑢 = −𝑈, 𝑣 = 0,
At 𝑦 = ℎ: 𝑢 = 𝑣 = 0,

(in the notation above, these give us 𝑦1 = 0, 𝑦2 = ℎ, 𝑢1 = −𝑈, 𝑢2 = 𝑣1 = 𝑣2 = 0).

To estimate the reduced Reynolds number we use the following approximate parameter val-
uesb:

Parameter Symbol Approx. value

the typical velocity of blood cell 𝑈 1mm/s
typical gap between cell and wall ℎ 1 𝜇m

plasma viscosity (approx. viscosity of water) 𝜈 10−6 m2/s
length of the capillary segment of interest ((approx. cell length) 𝐿 10 𝜇m

With these values, 𝜀 = 0.1 and 𝜀2Re = (ℎ/𝐿)2(𝑈𝐿/𝜈) ≈ (0.1)2 × (10−3 × 10−5/10−6) = 10−4,
which is a very small value! Therefore we can solve the simplified lubrication equation (5.19)
to get (5.20),

𝑢 = −𝑈 (ℎ − 𝑦)
ℎ

− 1
2𝜇

𝜕𝑝

𝜕𝑥
𝑦 (ℎ − 𝑦) .

We use Equation (5.19) to get (5.21),

𝜕𝑣

𝜕𝑦
=
𝑈𝑦

ℎ2
dℎ
d𝑥

+ 1
2𝜇

d2𝑝

d𝑥2 𝑦 (ℎ − 𝑦) +
1

2𝜇
d𝑝
d𝑥

dℎ
d𝑥
𝑦,
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and integrating (subject to the boundary condition 𝑣 = 0 at 𝑦 = 0), we find that

𝑣 =
𝑈𝑦2

2ℎ2
dℎ
d𝑥

+ 1
12𝜇

d2𝑝

d𝑥2 𝑦
2 (3ℎ − 2𝑦) + 1

4𝜇
d𝑝
d𝑥

dℎ
d𝑥
𝑦2.

Enforcing the boundary condition 𝑣 = 0 on 𝑦 = ℎ leads to the relationship

0 =
𝑈

2
dℎ
d𝑥

+ 1
12𝜇

ℎ3 d2𝑝

d𝑥2 + 1
4𝜇
ℎ2 dℎ

d𝑥
d𝑝
d𝑥

=
𝑈

2
dℎ
d𝑥

+ 1
12𝜇

(
ℎ3 d2𝑝

d𝑥2 + 3ℎ2 dℎ
d𝑥

d𝑝
d𝑥

)
=
𝑈

2
dℎ
d𝑥

+ 1
12𝜇

d
d𝑥

(
ℎ3 d𝑝

d𝑥

)
,

and, integrating the above expression with respect to 𝑥 gives

d𝑝
d𝑥

=
𝑐 − 6𝜇ℎ𝑈

ℎ3 ,

where 𝑐 is a constant of integration, which can be solved to find the pressure (note that ℎ needs
to be specified to do this). In the case of a flat cell parallel to the wall, ℎ is constant and so
d𝑝/d𝑥 is also constant, and the pressure drops linearly along the vessel, at a rate determined
by the conditions at the ends of the cell.

aIt is not technically difficult to extend this analysis to allow for the curvature of the wall and the non-flat en-
dothelial surface.

bNote that most of these parameter values are quoted only as order-of-magnitude estimates because (1) these
parameters vary a lot between different vessels and different situations, and (2) only a rough estimate of 𝜀2𝑅𝑒
shows that it is well small enough to use the small-reduced-Reynolds-number approximations. The length 𝐿 is hard
to estimate because it depends on the geometry of the vessel chosen. Here we take it as approximately 10 vessel
diameters
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5.4 Boundary Layer Analysis

 This topic is optional and provided for further reading.

Motivation As its name suggests, boundary layer analysis is used to analyse the flow near a bound-
ary of the fluid. This has important applications in many areas of engineering, because mechanical
problems, such as flow instability or separation, often begin in the boundary layer. Thus, analysing
the boundary layer flow can lead to a greater understanding of why instabilities or separation develop,
which may enable them to be avoided. The key to the analysis is to note that properties vary rapidly
as we move away from the boundary, but only moderately along the boundary. In this way, it is similar
to lubrication theory, and the derivation is very similar to that in Section 5.3. The main difference is
that the thickness of the boundary layer, that is, the analogy of the quantity ℎ that was used in the
lubrication theory section, is now not fixed a priori (in the lubrication theory section ℎ was fixed by the
geometry).

Another motivation for this field of study is that it is often challenging to simulate boundary layer anal-
ysis numerically because the flow properties change very rapidly there. Boundary layer analysis can
provide a way either to avoid needing to simulate the boundary layer, or to simplify the equations
there so that they are easier to simulate. In addition, boundary layer analysis can be combined with
another simplified analysis of the flow away from the boundary to provide a complete solution.

The history of boundary layer analysis can be traced back to the 19th century. Albeit the N-S equation
has been formulated early since the mid-1800s, it could not be solved except for the flow in simple
geometries (e.g., straight pipe). In 1904, Ludwig Prandtl (1875-1953) first proposed the boundary
layer approximation; in his idea, the flow is divided into 2 regions (Figure 5.2):

- outer flow region: flow can be approximated as inviscid and irrotational; the velocity field in this
region is solvable using the continuity equation and Euler equation (simplified from N-S equation
for inviscid fluid flow), and the pressure field is solved using Bernoulli’s theorem.

- inner flow region: flow near the wall, where viscous effects and rotationality cannot be ne-
glected. We need to solve the boundary layer equation.

inner flow regionfreestream 

velocity

wall

outer flow region

Figure 5.2: A flat plate parallel to an oncoming flow. The near wall region is where the boundary
layer exists, where the viscous effects dominate and influence the flow. 𝛿99 denotes the boundary layer
thickness at which 𝑢 = 99%𝑈 (i.e., 99% recovery of the free-stream velocity). Note that 𝛿99 is NOT a
streamline!
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For simplicity, we will assume a two-dimensional, steady flow near a flat boundary parallel to the
𝑥-axis, although the theory can be straightforwardly extended to a three-dimensional, unsteady flow
near a non-flat surface. In this section, we will derive the width of the boundary layer and simplified
equations for the flow within it.

The velocity and pressure fields are governed by the equations

𝜌

(
𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦

)
= − d𝑝

d𝑥
+ 𝜇𝜕

2𝑢

𝜕𝑦2 , (5.23)

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣
𝜕𝑦

=0, (5.24)

where the pressure 𝑝 is a function of 𝑥 only. Equations (5.23) and (5.24) represent a considerable
simplification of the full Navier-Stokes and continuity equations.

Boundary Layer Equation The boundary layer equation is an approximation to the N-S equation.
To derive such, we need to nondimensionalise the 𝑥-component of the N-S momentum equation.
Starting by defining the nondimensional variables

𝑥∗ =
𝑥

𝐿
, 𝑦∗ =

𝑦

𝛿
, 𝑢∗ =

𝑢

𝑈
, 𝑣∗ =

𝑣

𝑉
, 𝑝∗ =

𝑝

𝑃0
=

𝑝

𝜌𝑈2

where 𝐿 is the characteristic length scale, 𝛿 is the thickness of the boundary layer,𝑈, 𝑉 are the velocity
scales in the 𝑥- and 𝑦-directions, respectively. 𝑃0 = 𝜌𝑈2 is the characteristic pressure, derived from
Bernoulli’s theorem.

1. The nondimensional continuity equation is

𝑈

𝐿

𝜕𝑢∗

𝜕𝑥∗
+ 𝑉
𝛿

𝜕𝑢∗

𝜕𝑦∗
= 0. (5.25)

Note that, to satisfy the nondimensional continuity equation, the order of magnitude of the first
term must be balanced to that of the second term, i.e., 𝑈

𝐿 and 𝑉
𝛿 should be of the same order of

magnitude:

O
(
𝑈

𝐿

)
+ O

(
𝑉

𝛿

)
= 0, ⇒ 𝑈

𝐿
∼ 𝑉

𝛿
⇒ 𝑉 ∼ 𝑈𝛿

𝐿
(5.26)

2. The nondimensional 𝑥-momentum equation is

𝑈2

𝐿
𝑢∗
𝜕𝑢∗

𝜕𝑥∗
+ 𝑈𝑉

𝛿
𝑣∗
𝜕𝑢∗

𝜕𝑦∗
= −𝑈

2

𝐿

𝜕𝑝∗

𝜕𝑥∗
+ 𝜈 𝑈

𝐿2

(
𝜕2𝑢∗

𝜕𝑥∗2
+ 𝐿

2

𝛿2
𝜕2𝑢∗

𝜕𝑦∗2

)
. (5.27)

To further simplify this equation, we can take a few actions

Use the relation derived from Equation 5.26 to eliminate 𝑉 from Equation 5.27, i.e., 𝑈𝑉
𝛿 =

𝑈
𝛿 · 𝑈𝛿

𝐿 = 𝑈2

𝐿 ;

Multiply Equation 5.27 by the term 𝐿/𝑈2.

So far, the nondimensional 𝑥-momentum equation looks like

𝑢∗
𝜕𝑢∗

𝜕𝑥∗
+ 𝑣∗ 𝜕𝑢

∗

𝜕𝑦∗
= −𝜕𝑝

∗

𝜕𝑥∗
+ 1

Re

(
𝜕2𝑢∗

𝜕𝑥∗2
+ 𝐿

2

𝛿2
𝜕2𝑢∗

𝜕𝑦∗2

)
. (5.28)

Further,
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We restrict the analysis to ‘narrow’ channels only: 𝐿/𝛿 � 1.

We are interested in the type of flow that Re � 1. This ensures that the 1/Re term is safe
to be eliminated.

So far, the revised nondimensional 𝑥-momentum equation looks like

𝑢∗
𝜕𝑢∗

𝜕𝑥∗
+ 𝑣∗ 𝜕𝑢

∗

𝜕𝑦∗
= −𝜕𝑝

∗

𝜕𝑥∗
+ 1

Re
𝐿2

𝛿2
𝜕2𝑢∗

𝜕𝑦∗2
. (5.29)

The last question regards the term 1
Re

𝐿2

𝛿2 , since 1/Re � 1 but 𝐿/𝛿 � 1, which term dominates?
We know the order of magnitude of the L.H.S. and the R.H.S. of Equation 5.29 must balance:

O(1) + O(1) = O(1) + O
(

1
Re

𝐿2

𝛿2

)
,

Obviously, O
(

1
Re

𝐿2

𝛿2

)
= O(1). This means, 𝛿

𝐿
∼ Re−1/2 ⇒ 𝛿 ∼

√
𝐿𝜈/𝑈 .

3. Similarly, the nondimensional 𝑦-momentum equation can be simplified as

𝜕𝑝∗

𝜕𝑦∗
= 0. (5.30)

Re-dimentionalise Equation 5.25, Equation 5.29, and Equation 5.30, which are the boundary layer
equations:

(mass)
𝜕𝑢

𝜕𝑥
+ 𝜕𝑣
𝜕𝑦

= 0, (5.31)

(𝑥-momentum) 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦
= −𝜕𝑝

𝜕𝑥
+ 𝜈 𝜕

2𝑢

𝜕𝑦2 (5.32)

(𝑦-momentum)
𝜕𝑝

𝜕𝑦
= 0. (5.33)

Comments

The actual width of the boundary layer is not precisely defined; 𝛿 ∼
√
𝐿𝜈/𝑈 is only an

order-of-magnitude estimate. The point is that the flows well outside and well within the
boundary layer are qualitatively different from one another since different physical effects
play a dominant role.

Boundary layer analysis is a huge topic in its own right, and we have only scratched the
surface here! For example, we could generalise this approach to include the following:

dependence upon the third spatial dimension,

time-dependence of the solution,

gravity,

turbulence,

multi-layer boundary layers, in which different effects become important at different
distances from the surface,
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….

Boundary Conditions For the type of the flow as illustrated in Figure 5.2, the boundary conditions
are

𝑢 = 𝑈, at 𝑥 = 𝑦 = 0
𝑢 = 𝑣 = 0, at 𝑦 = 0, 𝑥 ≠ 0

𝑢 = 𝑈, as 𝑦 → ∞

Displacement Thickness The boundary layer thickness, 𝛿99 can be difficult to measure directly.
One alternative approach is finding the equivalence of 𝛿99 with the displacement thickness, 𝛿1(𝑥). As
illustrated by Figure 5.3(a), 𝛿1(𝑥) is a thin plate that obstructs the inviscid flow (stagnant layer).

The expression of 𝛿1(𝑥) is derived by mass conservation: equating the total mass flow at the inlet and
at the inviscid (unobstructed) region,

𝜌

∫ ∞

0
𝑢(𝑥, 𝑦)d𝑦 = 𝜌

∫ ∞

𝛿1

𝑈d𝑦.

Divide both sides by 𝜌𝑈, then split the integral,

𝜌

∫ ∞

0
𝑢∗d𝑦 =

∫ ∞

𝛿1

d𝑦 =⇒
∫ ∞

0
𝑢∗d𝑦 =

∫ ∞

0
d𝑦 −

∫ 𝛿1

0
d𝑦 =⇒ 𝛿1(𝑥) =

∫ ∞

0
(1 − 𝑢∗)d𝑦 .

Momentum Thickness The momentum thickness, 𝛿2(𝑥), is an alternative approximation of the
boundary layer thickness, for which 𝛿2(𝑥) has the same momentum deficit as the actual boundary
layer profile, as shown by Figure 5.3(b).

Equating the ‘artificial’ momentum deficit created by 𝛿2 to the real momentum deficit raised from the
velocity deficit, we have

𝜌

∫ 𝛿2

0
𝑈2 d𝑦︸           ︷︷           ︸

momentum deficit by 𝛿2

=
∫ ∞

0
𝜌𝑢 · (𝑈 − 𝑢)︸   ︷︷   ︸

velocity deficit

d𝑦 =⇒ 𝛿2(𝑥) =
∫ ∞

0
𝑢∗(1 − 𝑢∗) d𝑦 .

Despite the abstraction that lies in the concept of momentum thickness, it is particularly useful in
finding the fluid drag and skin friction on the plate.
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(a) displacement thickness

(b) momentum thickness

Figure 5.3: Two approximations of the thickness of an actual boundary layer: (a) displacement
thickness and (b) momentum thickness.

Example: Aorta

In the aorta we have𝑈 ∼ 1 m/s, 𝐿 ∼ 0.5 m (length of torso), 𝜇 ≈ 0.004 Pas and 𝜌 ≈ 1, 000 kg/m3.

Thus Re =
𝜌𝑈𝐿

𝜇
=

1000 × 1 × 0.5
0.004

≈ 105, which is the Reynolds number based on the length.

We have a boundary layer of thickness
√
𝐿𝜇

𝑈𝜌
=

√
0.5 × 0.004
1 × 1, 000

≈ 10−3 m = 1 mm. Thus

the boundary layer is about 1/40 of the diameter (1/20 of the radius) of the vessel. If we
did a numerical simulation of this, we would require several points within the boundary
layer (because we need to resolve on a scale much smaller than the width of the bound-
ary layer). Thus, we would need to use a mesh spacing of much less than 1/40 of the diameter.

We have previously estimated Reynolds number based on the diameter for vessels, which -
in the case of the aorta (with diameter 4 cm) - would give Re ≈ 104! This is a good example
that illustrates the reason why it is important to specify on which dimension we are basing our
estimate of the Reynolds number (if it is not obvious).
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5.5 Flow Passing Around a Sphere

 This topic is optional and provided for further reading.

From subsection 5.2, we have derived the Stokes equation, as

𝜇∇2u = ∇𝑝.

The type of flow governed by the Stokes equation is known as the Stokes flow, or the creeping flow.
Possibly, the most famous example of the Stokes flow is the flow passing around a sphere, as shown
in Figure 5.4. In Bioengineering, Stokes flow could, for example, be the drag experienced by a near-
spherical swimming microorganism.

recirculation

Stokes (creeping) flow vortices in the wake

Kármán vortex street

repeating patterns 

of vortices

Figure 5.4: Flow passing around a circular obstacle at different Reynolds numbers. The top left
scenario depicts the Stokes flow when Re � 1 - note that there is no flow separation or vortices.

The analytical solution for the Stokes flow exists, albeit the
derivation is cumbersome, which involves the use of the
streamfunction. The analytical result shows that the drag
force experienced by an object moving through a fluid at low
Reynolds numbers is called the Stokes drag, and is derived
from the Stokes equations. On a sphere, the Stokes drag is

𝐹𝑑 = 6𝜋𝜇𝑈𝑎 (5.34)

in the direction opposing the motion, which holds as long
as 𝜌𝑈𝑎/𝜇 � 1. This is a famous classical result in fluid
mechanics.

For example, the principle is used in a falling ball viscometer
in which a small spherical ball of known radius 𝑎 and mass
𝑚 is dropped into a fluid, whose viscosity 𝜇 is required to be
measured.

Figure 5.5: Schematic of the
Stokes flow. The Stokes drug, 𝐹𝑑,
is balanced by the force of gravity,
𝐹𝑔.

Once the ball has reached its terminal falling velocity𝑈, the forces on it must be in equilibrium, mean-
ing that the force of gravity balances the drag force (Figure 5.5). Assuming the sphere is small enough
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and going slowly enough, and the fluid is viscous enough that the flow has a low Reynolds number,
the drag is given by 6𝜋𝜇𝑈𝑎 and the force of gravity is 𝑚𝑔, where 𝑔 is the acceleration due to gravity.
Thus

𝜇 =
𝑚𝑔

6𝜋𝑈𝑎
, (5.35)

and so, measuring the terminal velocity and substituting it into this equation gives an estimate of the
viscosity of the fluid.

Example

Although Stokes flow occurs when Re � 1, it is also worth noting that, at higher Re, additional
unsteady forces appear. As illustrated in the bottom sketch in Figure 5.4, the repeating
patterns of vortices in the wake region of the obstacle contribute to an effect known as vortex
shedding, which can generate oscillatory forces on the body and lead to flow-induced vibrations.

As such, in structural dynamics, damping mechanisms are often introduced to dissipate energy
and reduce vibration amplitudes. A well-known example is the tuned mass damper (TMD)
installed in the Taipei 101. As shown in Figure 5.6, a large auxiliary mass is suspended within
the structure and tuned to dominant vibration frequency of the building. When wind-induced
loads excite the tower, the TMD oscillates out of phase with the structural motion, absorbing
vibrational energy and thereby reducing the overall response of the structure.

Figure 5.6: The tuned mass damper in Taipei 101 Tower. (Wikipedia)
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6 Physiological Modelling

6.1 Lumped Parameter Modelling

Resistance, Compliance, and Inertance

Resistance Compliance Inertance

𝑄 = Δ𝑝/𝑅 𝑄 = 𝐶
𝜕𝑝

𝜕𝑡
𝑝 = 𝐿

𝜕𝑄

𝜕𝑡

Resistance 𝑅: analogous to the electrical resistance, which models the dissipation of energy.
The flow rate 𝑄 is analogous to the electrical current (usually denoted by 𝐼), and the pressure
𝑝 is analogous to the electrical voltage (usually denoted by 𝑉).

Compliance 𝐶: analogous to the electrical capacitor, which models the expansion of cardiovas-
cular chambers under pressure, allowing them to store more fluid.

Inertance 𝐿: analogous to the electrical inductor, which models the inertial effects of the fluid.
When the fluid momentum is substantial, as the pressure on forward-flowing fluid reverses, the
fluid will not suddenly reverse its direction, but decelerate over a transient.

Example: Solving a Lumped Parameter Network

Consider the example lumped parameter network shown below,

𝑝1 𝑅1

𝑄1

𝑝2 𝑅2

𝑄2

𝑝3

𝐶

𝑄3

𝑝𝑔 = 0

... which yields a linear systemwith 4 unknowns
(𝑝2, 𝑄1, 𝑄2, 𝑄3) and 4 simultaneous equations:

𝑝2 − 𝑝1 = 𝑅1𝑄1,

𝑝3 − 𝑝2 = 𝑅2𝑄2,

𝑄3 = 𝐶 (𝑝 (𝑡 )2 − 𝑝 (𝑡−1)
2 )/Δ𝑡,

𝑄1 = 𝑄2 +𝑄3.

Note that 𝑝 (𝑡−1)
2 denotes the pressure 𝑝2 at the previous time step 𝑡 − 1; (𝑝 (𝑡 )2 − 𝑝 (𝑡−1)

2 )/Δ𝑡 is an
approximation of the derivative of 𝑝 w.r.t. 𝑡 in the backward Euler fashion.

The above linear system can be arranged into a matrix system, Ax = b,
1 −𝑅1 0 0
−1 0 −𝑅2 0
−1 0 0 Δ𝑡

𝐶

0 −1 −1 −1



𝑝2
𝑄1
𝑄2
𝑄3


=


𝑝1
−𝑝3

−𝑝 (𝑡−1)
2
0


,

and can be easily solved by inversion of the coefficient matrix: x = A−1b.
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6.2 Windkessel Models

TheWindkessel models are a category of lumped parameter models used to mathematically describe
the blood pressure waveform in the large, elastic arteries.

Historically, the term “windkessel” refers to the air chamber used in early German fire engines, which
temporarily stores energy by compressing air when fluid is pumped in and then releases that energy
to maintain a more continuous flow (Figure 6.1). By analogy, the arterial Windkessel represents the
ability of large arteries to store blood during systole through elastic expansion and to release it during
diastole, thereby smoothing the pulsatile output of the heart into a more continuous peripheral flow.

Figure 6.1: The concept of the Windkessel. The air reservoir is the actual Windkessel, and the large
arteries act as the Windkessel. (Westerhof et. al., 2009)

 Kindly note that in the following notes, 𝑍𝑐 and 𝑅 are used to denote proximal (characteristic)
resistance and distal resistance in the Windkessel models; while in the lecture slides (and some
other materials), they are denoted as 𝑅1 and 𝑅2. Conceptually and mathematically, 𝑍𝑐 ↔ 𝑅1 and
𝑅 ↔ 𝑅2 are equivalent.

Two-element Windkessel Model

This is the “original” Windkessel model proposed by Otto Frank (1865-1944).

𝑝(𝑡)
𝑄

𝑅

𝐶

Governing Equation:

d𝑝(𝑡)
d𝑡

+ 𝑝(𝑡)
𝑅𝐶

=
𝑄

𝐶

where 𝐶 denotes the vessel compliance (elastic-
ity), 𝑅 denotes the peripheral (distal) resistance.

Three-element Windkessel Model

One ostensible limitation of the two-element Windkessel model is that it cannot accurately predict the
upstroke pressure waveform in early systole (i.e., the rise in pressure during early systole), but simply
the diastolic pressure as a monotonic exponential decay (i.e., 𝑝(𝑡) = 𝑝init · 𝑒−𝑡/𝑅𝐶).
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In the three-element Windkessel model, a characteristic impedance component, 𝑍𝑐, is introduced to
represent the impedance of the proximal large arteries. This element accounts for the instantaneous
pressure-flow relationship associated with wave propagation during early systole, thereby enabling a
more realistic representation of the systolic pressure upstroke.

𝑝(𝑡)
𝑄

𝑍𝑐

𝑅

𝐶

Governing Equation:

d𝑝(𝑡)
d𝑡

+ 𝑝(𝑡)
𝑅𝐶

=
𝑄

𝐶

(
1 + 𝑍𝑐

𝑅

)
+ 𝑍𝑐

d𝑄
d𝑡

where 𝑍𝑐 is the characteristic impedance.

Comments

Rigorously, the term “impedance” governs how the pressure responds to the pulsatile flow;
whereas the term “resistance” characterises viscous energy loss under steady (or time-averaged)
flow conditions. Therefore, impedance generalises the steady pressure-flow relation to unsteady
flow and is frequency-dependent.

This is indeed the interpretation of the characteristic impedance, i.e., the unsteady, high-frequency
pressure-flow ratio set by proximal arterial stiffness and wave speed (which we shall discuss in
Section 6.3).

Derivation
For the full derivation of the three-element Windkessel model, consider the electrical schematic
annotated below: 𝑄 is the total flow, 𝑝𝑑 is the distal pressure defined at the junction of the 𝑅𝐶
network.

𝑝(𝑡) 𝑝𝑑

𝑄

𝑅 𝑄𝑅

𝐶

𝑄𝐶

𝑝ref = 0

Apply Kirchhoff’s Current Law at node 𝑝𝑑: 𝑄 = 𝑄𝑅 + 𝑄𝐶 . Moreover, since 𝑝(𝑡) − 𝑝𝑑 = 𝑍𝑐𝑄 ⇒
𝑝𝑑 = 𝑝(𝑡) − 𝑍𝑐𝑄.

The flow passes through the distal resistance 𝑅 is 𝑄𝑅:

𝑄𝑅 =
𝑝𝑑
𝑅

=
𝑝(𝑡) − 𝑍𝑐𝑄

𝑅
=
𝑝(𝑡)
𝑅

− 𝑍𝑐𝑄

𝑅
.

the flow passes through the capacitor 𝐶 is 𝑄𝐶 :

𝑄𝐶 = 𝐶
d𝑝𝑑
d𝑡

= 𝐶
d[𝑝(𝑡) − 𝑍𝑐𝑄]

d𝑡
= 𝐶

d𝑝(𝑡)
d𝑡

− 𝐶𝑍𝑐
d𝑄
d𝑡
.
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Hence, the total flow 𝑄 is

𝑄 = 𝑄𝑅 +𝑄𝐶

=
𝑝(𝑡)
𝑅

− 𝑍𝑐𝑄

𝑅
+ 𝐶 d𝑝(𝑡)

d𝑡
− 𝐶𝑍𝑐

d𝑄
d𝑡
,

rearrange, we get

𝐶
d𝑝(𝑡)

d𝑡
+ 𝑝(𝑡)

𝑅
=

(
1 + 𝑍𝑐

𝑅

)
𝑄 + 𝐶𝑍𝑐

d𝑄
d𝑡
.

Divide both sides of the equation above by 𝐶, and we will get the final governing equation as
presented.

Four-element Windkessel Model

The four-element Windkessel model is a further expansion of the three-element Windkessel model.
An inductor component, 𝐿, is introduced, in parallel to the characteristic impedance, to account for the
frequency-dependent relationship between pressure and flow, thereby representing blood inertance
and capturing variations in arterial pressure response with changes in heart rate (i.e., frequency).

𝑝(𝑡)
𝑄

𝑍𝑐

𝐿

𝑍total

𝑅

𝐶

Governing Equation:

d𝑝
d𝑡

+ 𝑝(𝑡)
𝑅𝐶

=
𝑄

𝐶

(
1 + 𝑍total

𝑅

)
+ 𝑍total

d𝑄
d𝑡

where 𝑍total =
i𝜔𝐿𝑍𝑐

i𝜔𝐿 + 𝑍𝑐
is the total impedance of

the parallel network - the characteristic impedance,
𝑍𝑐 and the inductor, 𝐿.

Derivation
Apply Kirchhoff’s Current Law at node 𝑝𝑑: 𝑄 = 𝑄𝑅 + 𝑄𝐶 . However, we need to express 𝑝𝑑 in
terms of 𝑝(𝑡), hence need to solve the total impedance of the 𝑍𝑐-𝐿 parallel network:

1
𝑍total

=
1
𝑍𝑐

+ 1
i2𝜋 𝑓 𝐿

=
i2𝜋 𝑓 𝐿 + 𝑍𝑐
i2𝜋 𝑓 𝐿𝑍𝑐

=⇒ 𝑍total =
i2𝜋 𝑓 𝐿𝑍𝑐

i2𝜋 𝑓 𝐿 + 𝑍𝑐
.

Note that sometimes 2𝜋 𝑓 is denoted as 𝜔, which is the angular frequency. Now, 𝑝(𝑡) − 𝑝𝑑 =
𝑍total𝑄. The rest of this derivation follows the same procedure for 3-WK.

What is the necessity of the inductance? The inclusion of the inductor better captures the
frequency characteristics of the flow.

At the low 𝑓 range: 2𝜋 𝑓 𝐿 � 𝑍𝑐, hence 𝑍total → 0, which removes the characteristic
impedance in the whole circuit;

At the high 𝑓 range: 2𝜋 𝑓 𝐿 � 𝑍𝑐, hence 𝑍total → 𝑍𝑐.

This means the inductance has no effect when the flow is steady, providing a zero resistance
pathway to the rest of the circuit under steady flow conditions. This effect is shown in Figure 6.2.
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Figure 6.2: Left: the mechanical equivalence of two-element, three-element, and four-element
Windkessel models; Right: Comparisons between the clinically measured and modelled (using
the three Windkessel models) input impedance against the frequency variations. (Westerhof et
al.)
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6.3 Moens-Korteweg Model of Pulse Wave Velocity

Pulse waves Blood is ejected into the aorta by contraction of the left ventricle, generating a rapidly
propagating wave of pressure (not flow) accompanied by deformation of the aortic wall. This wave,
also known as the pulse wave, travels along the arteries with a much faster speed (by orders of
magnitude) than the bulk motion of blood, and undergoes reflections at sites of impedance mismatch
such as arterial bifurcations and tapering.

central 

pulse pressure 

waveform

forward 

wave reflected 

wave

Pulse 

pressure

Time

time to 

reflected wave

pdiastolic

psystolic

vessel bifurcation / 

tapering

e.g.

Figure 6.3: Schematic of the formation of the central arterial pressure waveform. The total arterial
pressure results from the superposition of the forward-travelling wave (blue) generated by ventricular
ejection and the reflected wave (red) arising from impedance mismatches in the arterial tree.

How fast does the pulse wave travel? Adriaan Isebree Moens (1846-1891) and Diederik Korteweg
(1848-1941) derived an expression of the pulse wave velocity, PWV, linked to the distensibility of the
aortic wall:

PWV =

√
𝐸ℎ

2𝑅𝜌
, (6.1)

where 𝐸 denotes the linear elasticity of the aortic wall, ℎ and 𝑅 are the lumen thickness and radius,
respectively, with ℎ � 𝑅; and 𝜌 is the density of the blood. The Moens-Korteweg model assumes the
blood to be inviscid.

By definition, PWV increases with the stiffness of the vessels and decreases with the vessel radius.

Derivation
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pressure load, 

wall stress, 

linear wall 
elasticity, 

Figure 6.4: The schematic for the derivation of the Moens-Korteweg equation.

Equation 1 Assume the arterial wall has an isotropic linear elasticity (constant Young’smodulus,
𝐸). Therefore, the stress(𝜎)-strain(𝜀) relation is

𝜎 = 𝐸𝜀 = 𝐸
Δ𝑅
𝑅

with 𝜀 =
(2𝜋(𝑅 + Δ𝑅) − 2𝜋𝑅)

2𝜋𝑅
=
Δ𝑅
𝑅
.

Applying Newton’s 2nd Law and rearranging the expression leads to an expression of the pres-
sure,

𝑚wall𝑎wall = 𝐹pressure − 𝐹wall

0 = 2𝑅𝐿 × 𝑝 − 2𝐿ℎ × 𝜎 ⇒ 𝑝 =
𝜎ℎ

𝑅
=
𝐸ℎ

𝑅2 Δ𝑅.

Differentiating 𝑝 w.r.t. 𝑡, this leads to equation 1,

𝜕𝑝

𝜕𝑡
=
𝐸ℎ

𝑅2
𝜕Δ𝑅
𝜕𝑡

.

Equation 2 Integrating the continuity equation over the vascular cross-sectional area

1
𝑟

𝜕𝑟𝑢𝑟
𝜕𝑟

+
�

�
��>

0, axis-symmetrical
1
𝑟

𝜕𝑢𝜃
𝜕𝜃

+ 𝜕𝑢𝑧
𝜕𝑧

= 0 ⇒
∫ (

1
𝑟

𝜕𝑟𝑢𝑟
𝜕𝑟

+ 𝜕𝑢𝑧
𝜕𝑧

)
𝜕𝐴 = 0

⇒
∫ 𝑟=𝑅

𝑟=0

(
1
𝑟

𝜕𝑟𝑢𝑟
𝜕𝑟

)
2𝜋𝑟𝜕𝑟 + 𝜋𝑅2 𝜕𝑢𝑧

𝜕𝑧
= 0

⇒ 2𝜋𝑅𝑢𝑅 + 𝜋𝑅2 𝜕𝑢𝑧
𝜕𝑧

= 0.

Re-arrange leads to the equation 2,

𝑢𝑟 = −𝑅
2
𝜕𝑢𝑧
𝜕𝑧

,

where the notation 𝑢𝑧 denotes the average 𝑧-velocity across cross-section.

79



Equation 3 Assume negligible convective acceleration and no viscous losses, the Navier-Stokes
𝑧-momentum equation can be simplified as,

𝜌

(
𝜕𝑢𝑧
𝜕𝑡

+
�������������:0
𝑢𝑟
𝜕𝑢𝑧
𝜕𝑟

+ 𝑢𝜃
𝑟

𝜕𝑢𝑧
𝜕𝜃

+ 𝑢𝑧
𝜕𝑢𝑧
𝜕𝑧

)
= −𝜕𝑝

𝜕𝑧
+
�����������������:0

𝜇

[
1
𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑢𝑧
𝜕𝑟

)
+ 1
𝑟2
𝜕2𝑢𝑧
𝜕𝜃2 + 𝜕

2𝑢𝑧
𝜕𝑧2

]
+���*0
𝜌 𝑓𝑧

⇒ 𝜌
𝜕𝑢𝑧
𝜕𝑡

= −𝜕𝑝
𝜕𝑧

.

Derivation of PWV First, let 𝑢𝑟 =
𝜕Δ𝑅
𝜕𝑡

, this equates equation 1 and equation 2 and leads to
equation 4

𝑢𝑟 = −𝑅
2
𝜕𝑢𝑧
𝜕𝑧︸          ︷︷          ︸

equation 2

=
𝜕Δ𝑅
𝜕𝑡

=
𝑅2

𝐸ℎ

𝜕𝑝

𝜕𝑡︸             ︷︷             ︸
equation 1

, ⇒ 𝜕𝑢𝑧
𝜕𝑧

= − 2𝑅
𝐸ℎ

𝜕𝑝

𝜕𝑡︸              ︷︷              ︸
equation 4

Next, differentiate equation 3 and equation 4 w.r.t. 𝑡,

𝜌
𝜕𝑢𝑧
𝜕𝑡

= −𝜕𝑝
𝜕𝑧

differentiate−−−−−−−−−→
w.r.t. 𝑡

𝜌
𝜕2𝑢𝑧
𝜕𝑡𝜕𝑧

= −𝜕
2𝑝

𝜕𝑧2
,

𝜕𝑢𝑧
𝜕𝑧

= − 2𝑅
𝐸ℎ

𝜕𝑝

𝜕𝑡

differentiate−−−−−−−−−→
w.r.t. 𝑡

𝜕2𝑢𝑧
𝜕𝑧𝜕𝑡

= − 2𝑅
𝐸ℎ

𝜕2𝑝

𝜕𝑡2
,

which allows us to equate the R.H.S. as

𝜕2𝑝

𝜕𝑧2
=

2𝑅𝜌
𝐸ℎ

𝜕2𝑝

𝜕𝑡2
⇒ 𝜕2𝑝

𝜕𝑡2
=

𝐸ℎ

2𝑅𝜌︸︷︷︸
𝑐2

𝜕2𝑝

𝜕𝑧2
,

which can be subsequently rearranged as the wave equation. Denote the term
𝐸ℎ

2𝑅𝜌
= 𝑐2, for

which the term 𝑐 is the expression of the wave speed of pressure (a.k.a. pulse wave velocity,
PWV).

Example: Moens-Korteweg equation

Pressure transducers spaced 1 cm apart axially are deployed in the aorta, and then in the
brachial artery of a healthy human. Based on the arrival times of the peaks of the pressure
waves, the time delay between signals from the two transducers is measured as 0.05 s for the
aorta and 0.01 s for the brachial artery.

For the aorta, diameter = 2 cm, wall thickness = 0.1 cm. For the brachial artery, diameter
= 6 mm and wall thickness = 0.3 mm. You may assume a blood density of 1 g/cm3.
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PT1 PT2

pres.

time

Question:

Estimate the elastic moduli of these two vessels;

Explain differences in their values based on your knowledge of artery wall structure.

Answer: From the Moens-Korteweg equation,

𝑐 =

√
𝐸ℎ

2𝜌𝑅
⇒ 𝐸 =

2𝜌𝑅𝑐2

ℎ
,

where 𝑐 is wavespeed, 𝐸 is the elastic modulus, 𝑅 is radius, ℎ is wall thickness.

Aorta: The measured wavespeed is

𝑐aorta =
ℓ

𝑡aorta
=

1 cm
0.05 s

= 20 cm/s,

and thus

𝐸aorta =
2 × (1 g/cm3) × (1 cm) × (20 cm/s)2

0.1 cm
= 8, 000 g

cm s2 .

Brachial artery: The measured wavespeed is

𝑐brachial =
ℓ

𝑡brachial
=

1 cm
0.01 s

= 100 cm/s,

and thus

𝐸brachial =
2 × (1 g/cm3) × (0.3 cm) × (100 cm/s)2

0.03 cm
= 200, 000 g

cm · s2 .

⇒ The brachial is stiffer (higher elastic modulus) than the aorta, due to its higher collagen and
smooth muscle cell content, whereas the aorta has more elastin.
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Appendix A Derivations of Continuity andNavier-Stokes Equations From
Reynolds Transport Theorem

A.1 Reynolds Transport Theorem

To elucidate the concept of the Reynolds Transport Theorem (RTT), we consider a control volume
(CV) initially filled with a quantity 𝐵 that flows at a fixed speed u. After some time, portions of 𝐵
initially inside the volume move outside and new portions of 𝐵 enter, as depicted by Figure A.1.

Figure A.1: Movement of a physical quantity 𝐵 by fluid flow from inside to outside of the control
volume.

Regions in Figure A.1 are

- I: the entire fluid system within CV at time 𝑡

- II: new fluid that has entered CV at time 𝑡 + Δ𝑡

- III: portion of fluid system that remains inside CV at time 𝑡 + Δ𝑡

- IV: portion of a fluid system that is outside of CV at time 𝑡 + Δ𝑡

By conservation of the quantity 𝐵 in the CV, “how much out must be balanced by how much in”,

𝐵system |𝑡+Δ𝑡 − 𝐵system |𝑡︸                         ︷︷                         ︸
change of B in system

= 𝐵𝐼 𝐼 𝐼 + 𝐵𝐼𝑉 − 𝐵𝐼

= (𝐵𝐼 𝐼 𝐼 + 𝐵𝐼 𝐼 − 𝐵𝐼 )︸                 ︷︷                 ︸
change of B in CV

+ (𝐵𝐼𝑉 − 𝐵𝐼 𝐼 )︸         ︷︷         ︸
Net amount of B

leaving CV due to flow

𝐵system |𝑡+Δ𝑡 − 𝐵system︸                       ︷︷                       ︸
Term A

= 𝐵𝐶𝑉 |𝑡+Δ𝑡 − 𝐵𝐶𝑉 |𝑡︸                 ︷︷                 ︸
Term B

+ Net amount of B leaving CV due to flow︸                                                    ︷︷                                                    ︸
Term C

Divide each term by Δ𝑡, and limit the change in time to infinitesimally small: Δ𝑡 → 0.

Term A: rate of change of 𝐵 within the system (Lagrangian description)

lim
Δ𝑡→0

𝐵system |𝑡+Δ𝑡 − 𝐵system |𝑡
Δ𝑡

=
d𝐵system

d𝑡
.

Term B: rate of change of B within CV (Eulerian description)

lim
Δ𝑡→0

𝐵𝐶𝑉 |𝑡+Δ𝑡 − 𝐵𝐶𝑉 |𝑡
Δ𝑡

=
𝜕𝐵𝐶𝑉

𝜕𝑡
=
𝜕

𝜕𝑡

∫
CV

𝜌𝛽 d𝑉,
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where 𝛽 =
d𝐵
d𝑚

is the amount of 𝐵 per unit mass.

Term C: rate of change of B within CV as it is lost by fluid flow (Eulerian description)

lim
Δ𝑡→0

Net amount of B leaving CV due to flow
Δ𝑡

= rate of B leaving CV due to flow

=
∮
CS

𝜌𝛽(u · n̂) d𝐴,

where (u · n̂) quantifies the velocity component in the direction of the normal vector n̂.

By equating Term A = Term B + Term C,

d𝐵system

d𝑡
=
𝜕

𝜕𝑡

∫
CV

𝜌𝛽 d𝑉 +
∮
CS

𝜌𝛽(u · n̂) d𝐴 , (A.1)

which is the final expression of RTT.

In other words, ©­«
Rate of change
of 𝐵 in the
system

ª®¬ = ©­«
Rate of change
of 𝐵 in control

volume

ª®¬ +
(
Net flux of 𝐵 out
of control volume

)
.

A.2 Conservation of Mass

For the following derivations, an infinitesimally small cube positioned in the Cartesian coordinate
system is selected as the CV. The length of the edges is 𝛿, hence, the coordinates of the two diagonal
nodes are (𝑥0, 𝑦0, 𝑧0) and (𝑥0 +𝛿, 𝑦0 +𝛿, 𝑧0 +𝛿), respectively. A surface on the cube has an area 𝐴 = 𝛿2,
the cube has a volume 𝑉 = 𝛿3.

(��, ��, ��)

(�� + �, �� + �, �� + �)

Figure A.2: Control volume used for the analysis.

Expressed in the language of RTT, mass conservation simply means the overall rate of change of

mass is 0. Here, the physical quantity ‘𝐵’ is mass, 𝑚; hence, following the definition, 𝛽 =
d𝐵
d𝑚

=
d𝑚
d𝑚

= 1.
Mathematically,

0 =
𝜕

𝜕𝑡

∫
CV

𝜌 d𝑉 +
∮
CS

𝜌(u · n̂) d𝐴. (A.2)

To evaluate the first integral in Equation A.2, assume the variation of the density 𝜌 is negligible within
the CV, hence,

∫
CV

𝜌d𝑉 ≈ 𝜌𝑉 = 𝜌𝛿3. Differentiate the integral w.r.t. the time 𝑡,

𝜕

𝜕𝑡

∫
CV

𝜌 d𝑉 ≈ 𝜕 (𝜌𝛿3)
𝜕𝑡

= 𝛿3 𝜕𝜌

𝜕𝑡
. (A.3)
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To evaluate the second integral in Equation A.2, we need to count the flow passing through the sur-
faces in three orthogonal directions. For the 𝑥-direction, the velocity component is 𝑢𝑥, the inlet and
outlet surfaces are positioned at 𝑥 = 𝑥0 and 𝑥 = 𝑥0 + 𝛿, respectively; therefore,∮

CS

𝜌𝑢𝑥 d𝐴 = (𝜌𝑢𝑥𝛿2)
����𝑥=𝑥0+𝛿

𝑥=𝑥0

= 𝛿3
( (𝜌𝑢𝑥) |𝑥=𝑥0+𝛿−(𝜌𝑢𝑥) |𝑥=𝑥0

𝛿

)
≈ 𝛿3 𝜕 (𝜌𝑢𝑥)

𝜕𝑥
. (A.4)

Similarly, for flow in the 𝑦-direction and 𝑧-direction, the surface integrals are∮
CS

𝜌𝑢𝑦 d𝐴 ≈ 𝛿3 𝜕 (𝜌𝑢𝑦)
𝜕𝑦

, (A.5)∮
CS

𝜌𝑢𝑧 d𝐴 ≈ 𝛿3 𝜕 (𝜌𝑢𝑧)
𝜕𝑧

. (A.6)

Combine Equation A.4, A.5, A.6,∮
CS

𝜌(u · n̂) d𝐴 = 𝛿3
(
𝜕 (𝜌𝑢𝑥)
𝜕𝑥

+
𝜕 (𝜌𝑢𝑦)
𝜕𝑦

+ 𝜕 (𝜌𝑢𝑧)
𝜕𝑧

)
, (A.7)

or, in vector notation, ∮
CS

𝜌(u · n̂) d𝐴 = 𝛿3∇ · (𝜌u).

Substituting Equation A.3 and Equation A.7 into Equation A.2 yielding the celebrated continuity equa-
tion

0 ≈ 𝛿3 𝜕𝜌

𝜕𝑡
+ 𝛿3∇ · (𝜌u) ⇒ 𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌u) = 0 . (A.8)

For incompressible fluid flow, the density 𝜌 is constant, i.e., it is invariant of time and space. This
allows us to separate such a term from any partial derivatives in the equation, yielding the form

∇ · u = 0. (A.9)

A.3 Conservation of Linear Momentum

The linear momentum is the product between the mass and the velocity, P = 𝑚u. Hence, 𝛽 =
dP
𝜕𝑚

= u.
By RTT, the conservation of linear momentum is

F =
𝜕

𝜕𝑡

∫
CV

𝜌u d𝑉 +
∮
CS

𝜌u(u · n̂) d𝐴. (A.10)

The L.H.S. of Equation A.10 is the total force exerted on the same CV as shown in Figure A.2. The
total force can be further decomposed into

- The internal force that acts on the surfaces of the CV. It is comprised of the hydrostatic force
that raises from the pressure load from the fluid flow; and the deviatoric force which is due to
the fluid shear as the fluid moves with a velocity.

Finternal = −𝑉∇𝑝︸ ︷︷ ︸
hydrostatic

+ 𝑉𝜇∇2u︸  ︷︷  ︸
deviatoric

.

(Note that the “force” we mentioned here is force per unit volume [N/m3] - hence, we multiply
the volume to recover the actual force of the unit Newton.)
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- The external force acting on CV that may be due to the presence of gravity, electromagnetism,
etc.

Fexternal = 𝑚f = 𝜌𝑉 f .

Hence, the total force
F = Finternal + Fexternal = 𝑉 (−∇𝑝 + 𝜇∇2u + 𝜌f ). (A.11)

You may recognise the expression enclosed in the bracelet in Equation A.11 is the R.H.S. of the
Navier-Stokes (N-S) momentum equation.

The first integral on the R.H.S. of Equation A.10 is evaluated following the same fashion as demon-
strated in the derivation of mass conservation. Assume change of 𝜌 and u is negligible within the CV,∫
CV

𝜌ud𝑉 ≈ 𝜌u𝑉 = 𝛿3𝜌u, hence

𝜕

𝜕𝑡

∫
CV

𝜌u d𝑉 ≈ 𝜕 (𝛿3𝜌u)
𝜕𝑡

= 𝛿3 𝜕 (𝜌u)
𝜕𝑡

. (A.12)

The second integral on the R.H.S. of Equation A.10, we first consider the flow passing through the
surfaces at the 𝑥-direction only, i.e., u · n̂ = 𝑢𝑥, leading to∮

CS

𝜌u𝑢𝑥 d𝐴 = 𝜌u𝑢𝑥𝛿2
����𝑥=𝑥0+𝛿

𝑥=𝑥0

= 𝛿3
(
𝜌u𝑢𝑥 |𝑥=𝑥0−𝜌u𝑢𝑥 |𝑥=𝑥0+𝛿

𝛿

)
≈ 𝛿3 𝜕 (𝜌u𝑢𝑥)

𝜕𝑥
. (A.13)

Similarly, for flow in the 𝑦-direction and 𝑧-direction, the surface integrals are∮
CS

𝜌u𝑢𝑦 d𝐴 ≈ 𝛿3 𝜕 (𝜌u𝑢𝑦)
𝜕𝑦

, (A.14)∮
CS

𝜌u𝑢𝑧 d𝐴 ≈ 𝛿3 𝜕 (𝜌u𝑢𝑧)
𝜕𝑧

. (A.15)

Combine Equation A.13, A.14, A.15,∮
CS

𝜌u(u · n̂) d𝐴 ≈ 𝛿3
(
𝜕 (𝜌u𝑢𝑥)
𝜕𝑥

+
𝜕 (𝜌u𝑢𝑦)
𝜕𝑦

+ 𝜕 (𝜌u𝑢𝑧)
𝜕𝑧

)
. (A.16)

Substituting Equation A.11, Equation A.16, and Equation A.12 into Equation A.10, neglecting the
common term 𝑉 = 𝛿3 from both sides, yielding the expression of the N-S momentum equation

𝜕 (𝜌u)
𝜕𝑡

+ 𝜕 (𝜌u𝑢𝑥)
𝜕𝑥

+
𝜕 (𝜌u𝑢𝑦)
𝜕𝑦

+ 𝜕 (𝜌u𝑢𝑧)
𝜕𝑧

= −∇𝑝 + 𝜇∇2u + 𝜌f . (A.17)

One final step to take is rearranging the unsteady and convective acceleration terms on the L.H.S. of
Equation A.17. We can assume the fluid is incompressible, allowing us to separate 𝜌 from the partial
derivatives. Therefore,

𝜕 (𝜌u)
𝜕𝑡

= 𝜌
𝜕u
𝜕𝑡
,

𝜕 (𝜌u𝑢𝑥)
𝜕𝑥

= 𝜌
𝜕 (u𝑢𝑥)
𝜕𝑥

= 𝜌

(
𝜕𝑢𝑥
𝜕𝑥

u + 𝑢𝑥
𝜕u
𝜕𝑥

)
,

𝜕 (𝜌u𝑢𝑥)
𝜕𝑥

= 𝜌
𝜕 (u𝑢𝑦)
𝜕𝑦

= 𝜌

(
𝜕𝑢𝑦

𝜕𝑦
u + 𝑢𝑦

𝜕u
𝜕𝑦

)
,

𝜕 (𝜌u𝑢𝑧)
𝜕𝑧

= 𝜌
𝜕 (u𝑢𝑧)
𝜕𝑧

= 𝜌

(
𝜕𝑢𝑧
𝜕𝑧

u + 𝑢𝑧
𝜕u
𝜕𝑧

)
.
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Substitute the revised expressions into Equation A.17:

����������(
𝜕𝑢𝑥
𝜕𝑥

+
𝜕𝑢𝑦

𝜕𝑦
+ 𝜕𝑢𝑧
𝜕𝑧

)
u + 𝜌

(
𝜕u
𝜕𝑡

+ 𝑢𝑥
𝜕u
𝜕𝑥

+ 𝑢𝑦
𝜕u
𝜕𝑦

+ 𝑢𝑧
𝜕u
𝜕𝑧

)
= −∇𝑝 + 𝜇∇2u + 𝜌f , (A.18)

or in compact form,

𝜌

(
𝜕u
𝜕𝑡

+ (u · ∇)u
)
= −∇𝑝 + 𝜇∇2u + 𝜌f . (A.19)

which is the final expression of the N-S equation that we are all familiar with.
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