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List of important notation used in the course

As far as possible, the notation is consistent throughout the course. We use the following notation:

Symbol Definition Dimensions
x = (x;) spatial position L
(x,y,2) Cartesian coordinates L
(x1,%9,x3) Cartesian coordinates L
(r,0,2) cylindrical coordinates (L,1,L)
(r,0,9) spherical coordinates (L,1,1)
V(%) gradient operator 1/L
V- (%) divergence operator 1/L
V X (%) curl operator 1/L
V2 (%) Laplacian operator 1/L?
i,j k unit vectors in Cartesian coordinates 1
X, T, e1, e, eg, €tc. unit vectors in other directions 1
t time T
u = (u;) fluid velocity LT
u, v, w velocity components in Cartesian coordinates L/T
Ui, Uz, U3 velocity components in Cartesian coordinates L/T
Uy, Ug, Uy velocity components in cylindrical coordinates L/T
Up, Ug, Ug velocity components in spherical coordinates LT
Pl bulk viscosity of a Newtonian fluid M/(LT)
u dynamic viscosity of a Newtonian fluid M/(LT)
v kinematic viscosity of a Newtonian fluid LT
p fluid density M/L3
I=0;; identity tensor 1
Oij Kronecker delta 1
Eijk Levi—Civita symbol (alternating tensor) 1
o, 0jj Cauchy stress tensor M/(LT?)
d, d;; deviatoric stress tensor M/(LT?)
e=e¢;; strain-rate tensor 1/T
T, Tjj shear stress tensor M/(LT?)
p pressure M/(LT?)
f, f; body force per unit mass L/T?
g acceleration due to gravity L/T?
g magnitude of g L/T?
v shear rate 1/T
0 volumetric flow rate L3T
R flow resistance M /(L*T)
E Young’'s modulus (linear elasticity) M/(LT?)

Although these notations are widely used in the literature, you should be aware that variations exist;
for example, v is sometimes used for velocity, and T for the traction (stress) vector, etc.

Usually, when writing by hand, we underline first-order tensors (vectors) once, e.g., u, and second-
order tensors twice, e.g., o. In the printed notes, tensors appear in bold, roman font. Roman font is
also used for dimensionless groups, e.g., Re rather than Re.



1 Tensors and the Constitutive Relationship of a Fluid

Our aim in this section is to write down equations that govern the mechanics of a fluid. Specifically,
we will be looking at the pressure and viscous effects, and how to capture them mathematically.

1.1 Definition of a Tensor

The stress tensor is an important concept in fluid mechanics that will be introduced in Section 1.4. In

order to understand it, we must first cover some tensor theory.

Definition of a tensor A tensor is a mathematical object whose components transform according
to specific rules under a change of coordinate system.

Example of Tensors

Velocity u, position x, pressure p, density p, and any other physical property of the fluid.

Notation for tensors A tensor, A, can be notated as a single entity, i.e. as A, or in terms of its
elements, a;jre.... We can write A = a;ji¢.... Note:

* in general, a tensor can have any number of subscripts (“indices”), for example:
= A 0M-order tensor (also called a scalar) has no subscript,
A =a, whereaisascalar
* a 18t-order tensor (also called a vector) has one subscript,
A =(a;), where the qg;'s are scalars
= a 2"%-order tensor (also called a matrix) has two subscripts ,
A = (a;;), where the q;;’s are scalars

= each subscript ranges from 1 to the number of dimensions. Therefore in three dimensions, each
subscript takes the values 1, 2 or 3.

Examples of 0"-, 15t, and 2"9-order Tensors

= 0-order tensor: fluid density (p), fluid dynamic viscosity(x), fluid pressure (p)

= 1Storder tensor: (Cartesian) velocity vector

u ui
u=u;=|v|=|us|, forie{l,2,3}
w us

= 2"d_order tensor: Cauchy stress tensor

o1 012 013
o=0;=|091 o9 0|, forije{l,23}

031 032 033




1.2 Two Special Tensors

There are two special tensors which are particularly useful for writing dot products and cross products
in tensor notation.

* The Kronecker delta, ¢;;: This is a 2"d_order tensor representing the identity matrix, I. It is

defined as
1 ifi=j
si=4 7. (1.1)
0 ifi#j

Comments

1. The Kronecker delta tensor exists in any dimension, representing the identity matrix

10

100
0 1) Fora3x3 matrix: 6;;=|0 1 0
0 01

Fora2x 2 matrix: ¢;; = (

2. Since ¢;; is equivalent to the I, the following properties hold:

* §;;x; = x; (When act on a vector, the vector does not change)
* d;jaij = 2, ai; =tr(A) (when act on a matrix, yielding the sum of diagonal elem.)

* The alternating tensor, ¢;;;: This is also known as the Levi-Civita tensor, the permutation
tensor, and the antisymmetric tensor. It is a 3-order tensor, and it is only defined in three
dimensions (unlike the Kronecker delta). It is defined as

1 if{i,j, k} is an even permutation of {1, 2, 3}
gijk =1—-1 1if{i, , k} is an odd permutation of {1,2,3} . (1.2a)
0 if{i,j, k}is not a permutation of {1,2, 3}

In other words:

]' {l’]’k} = {1’2’3}7{2’391}9{3a1’2}
gijk=9-1 {i,j,k} = {3,2,1},{2,1,3},{1,3,2} . (1.2b)
0 otherwise
k
€ij1 &ij &3 //
1 /0 0 O 00 -1 .
{0 o 1 00 0 = & || |
\o -1 0 10 0 | |
4 . ¥
________ "J l —————>j

Figure 1.1: A graphical decomposition of the alternating tensor ¢;; for k € {1, 2, 3}.

Comments

1. Since this is a 3"-order tensor it cannot be written very easily on a two-dimensional



sheet of paper! (see Figure 1.1, where we expanded k£ = 1,2,3 and stacked the
tensor along the k-direction.) This is one reason why tensor notation is much more
convenient when dealing with multi-dimensional quantities.

2. The alternating tensor is invariant under even permutations of its indices, and it's
negative under odd permutations, that is

Eijk = Ejki = Ekij = —E€ikj = —Ejik = —Ekji- (1.3)
3. One useful Levi-Civita and Kronecker delta (¢-6) identity reads:

EijkEitm =00 km — O jmOke. (1.4)

1.3 Tensor Operations
1.3.1 The Summation Convention

The summation convention is a convenient way of notating sums of products of terms that come up
repeatedly in tensor mathematics and vector calculus. The rules of the summation convention are as
follows:

1. A repeated index in a term of the expression is called a dummy index. All dummy indices are
summed over (the sum is from 1 to 3 in three dimensions and from 1 to 2 in two dimensions).

2. No index can appear more than twice in a given term. Thus all dummy indices appear exactly
two times in a term.

3. Indices that appear once are called free indices. The set of free indices in each term of an
expression must be identical.

Example 1: Using tensor summation convention

For vectors a = (a1, as,a3)™ and b = (b1, by, b3) T, the dot product between a and b is

3
a-b= a1b1 + a2b2 + a3b3 = Z aibi = aibi
i=1
Here, a;b; is the summation convention; i € {1, 2, 3} is a dummy index because it appears twice
in the same term.

Example 2: Using tensor summation convention

For a tensor operation defined using the summation convention a;jxbjcire + die (Where
i,j, k,te{l1,2,3}), we say i and ¢ are free indices, j and k are dummy indices.

By expanding the summation convention, and annotated as follows:

step ®

3

3
(Z Z a,-jkbj Ckg) +di[ .

step @

step @




= step @: Compute a;jx - bj, the dummy index is j. This step eliminates the dimension j,
which results in a product of the dimension (i X k).

= step @: Compute the dot product between the result from step ® and cy,. The dummy
index is k. This step results in a product of the dimension (ix¢), since (ixk)-(kxt) — (ix{).

= step @: Perform summation between two tensors of the same dimension (i x ¢).

Over the operation, i and ¢ can freely range from 1 to 3, hence they are the free indices.

1.3.2 Tensor Operations in Linear Algebra
Inner Product The inner product of tensors is defined through index contraction. This operation

reduces the order of tensors by summing over a common index.

For two vectors a, b € R”, the inner product is defined as
n
a-b= Z al-b,- = aibi, (15)
i=1
which produces a scalar (0"-order tensor).

More generally, contraction may be used to combine tensors of different orders. For example, multi-
plying a second-order tensor (matrix) A by a vector x yields a vector,

(AX),' = Al-jxj. (16)

Let A = (a;;) and x = (x;). Then

3
ajlr a2 ais\(xi ajlxy +ajexe +ajsxs Zf:l a1

— _ _|+v3
Ax =laz1 az as||[x2|=|azx1 +asxs+axxs|= Zj:l az;jx;
asy asz aszf\x3 asi1Xi +assxg +assxs 3 25?1
2jo1 G3j%;

Using the summation convention, the above can be abbreviated as:

3

Ax = Zaijxj =dajjXj.
=1

Outer Product The outer product, also known as the dyadic product, combines two tensors with-
out contraction and therefore increases the tensor order.

For two vectors a,b € R”, the outer product is defined as
(a®b);; = a;b;. (1.7)

The result is a second-order tensor (matrix). Unlike the dot product, no summation is implied.



For vectors a = (ay,as,a3)™ and b = (b, ba, b3) T, the dyadic product is

a1b1 albg a1b3
a®b=|asby asby asbs|.
asby asby asbs

The outer product is frequently used to construct tensors from vector bases. For example, a 2"9-order
tensor A may be expressed as
A= Aijéi ® éj, (18)

where {&;} is an orthonormal basis.

Cross Product The cross products of tensors: involves the use of the alternating tensor
(a X b)i = s,-jkajbk. (19)

Using tensor cross product rule to prove a x (bxc¢) = (a-c)b— (a-b)c.
ax(bxc)= (sijk aj (bx c)k) = (sijk a; Exem be cm)

= ( &kij €kem aj be cm)
—_—
since &iij=&ijk

= [(6i£"5jm - 6im6jf) a; be Cm]

by e-¢ identity
= (ajbicj — ajbjc,-)
=(a-c)b—-(a-b)c v

1.3.3 Differential Operators in Index Notation

= The gradient of a scalar field ¢(x) produces a vector:

0
(Vg)i = a_¢' (1.10)
Xi
The gradient of a vector field f(x) produces a matrix (“Jacobian matrix”):
0fi
V) = —. 1.11
(VEy = 50 (1.11)
* The divergence of a vector field f(x) produces a scalar:
v.r= 2 (1.12)
axi
The divergence of a 2"-order tensor A produces a vector:
aAij
(V-A); = . (1.13)
6xj



= The curl of a vector field f(x) can be written using the alternating tensor

(Vxf); = sijk%- (1.14)
8xj

Comments

There are several identities in vector calculus that can be proved using these special tensors,
for example

V X (V§) =0,
Vx(Vxf)=V(V-f) -V,
Vx(axb)=(V-b)a+(b-V)a—(V-a)b—(a-V)b,
V.- (VxF)=0.

You should be able to prove/verify these identities in tensor notation.




1.4 The Stress Tensor

Cauchy showed that the state of stress at a point in a continuum body is completely defined by a
2nd_order tensor, namely, the Cauchy stress tensor?, o = o;j, which has 9 scalar components:

o111 012 013
Oij =021 022 023]|- (115)

031 032 033

However, the stress (force per unit area) itself is a vector (15t-order tensor) defined on a fluid element’s
surface. This stress vector is known as the traction, denoted by t = r; and expressed as follows:

(in tensor notation) ti = oyjnj,
_ _ (1.16)
(in vector notation) t =on,

where n = n; is the unit normal vector to the surface.

Thus, we can interpret the physical meaning of the stress tensor component o;; as “the i component
of the traction vector acting on the surface with its unit normal vector e;”. For example:

= 012 denotes the force in the x;-direction acting on a surface with a normal in the x»-direction.
This component represents a shear stress.

* o33 denotes the force in the xs-direction acting on a surface with a normal in the xs-direction.
This component represents a hormal stress.

Comments

* The traction t is the force per unit area exerted by the fluid on the right-hand side of the
small imaginary surface dS shown in the figure below, upon the fluid on the left-hand side
of ds.

* The stresses acting on opposite sides of a surface (i.e. on the surfaces with normals n and
—n) are equal and opposite. This is required for linear equilibrium within the fluid.

* The stress tensor is symmetric, i.e. o;; = oj;. This is required for rotational equilibrium
within the fluid, and can be derived from the principle of conservation of angular momen-
tum.

* The elements on the principal diagonal of the stress tensor matrix are called the normal
stresses. The other six elements are called the shear stresses.

Ihamed after Augustin-Louis Cauchy (1789-1857).

10



fluid element

\/l %z

= Finally, note that these force calculations assume the components of the stress tensor are
uniformly distributed over the faces of the fluid element, which is often idealised as an
infinitesimal unit cube, as shown above.

Normal Stress We can decompose the stress tensor ¢ into diagonal elements and off-diagonal
elements. The diagonal elements, o;, are known as the normal stresses, and their mean defines the
hydrostatic pressure:

1 1
p = —gtr (0') = —50'1‘1‘. (117)

This equation gives us a method by which we can (at least in our imagination) think about measuring
the pressure at a particular point in the fluid. We consider three small, mutually orthogonal planes
passing through the point (aligned perpendicular to the x, y and z directions) and measure the three
forces on the three surfaces. Dividing each force by the area of the respective plane leads to the
stresses on the surfaces, which are, respectively,

o1 12 o13
o021 |, o922 |, and 023
031 032 033

The normal components of the respective stresses are o1, o9 and o33, and hence the pressure is
the average of the three normal components of the stresses. The interpretation of the pressure is
different for compressible and incompressible fluids:

= Compressible fluids: From classical thermodynamics, it is known that we can define the pres-
sure of the fluid as a parameter of state, making use of an equation of state (for example,
p = pRT for an ideal gas).

* Incompressible fluids: For an incompressible fluid the pressure p is an independent, purely
dynamical, variable.

Deviatoric Stress Deviatoric stress is the traceless part of the stress tensor o- (Note: the deviatoric
stress is NOT simply the off-diagonal elements in o, but includes both diagonal and shear compo-
nents.) The deviatoric stresses arise from the fluid motion, hence they are actually the shear stresses
on each fluid particle. By Equation (1.17), we know

O-ijz_péij"'dij, (118)

where d = d;; is called the deviatoric stress tensor. In a fluid at rest, we have 4;; = 0, and thus
o;j = —pd;; (hydrostatic stresses only), so in this case o is a multiple of the identity matrix.

11



1.5 The Constitutive Relationship of Newtonian Fluid

The constitutive relationship is an equation that describes the relationship between the stress ten-
sor and the kinematic state of the fluid. It is found from experiments and governs the mechanical
behaviour of the fluid, that is the rheology of the fluid. Together with the equations of mass and mo-
mentum conservation, this closes the problem for the velocity and pressure fields. Every fluid obeying
the continuum approximation has a constitutive relationship, which can be thought of as a definition
of its mechanical properties.

We can now formulate a definition of a Newtonian fluid by stating its constitutive relationship. The

ou;
deviatoric part of the stress tensor, d, is a linear function of the 9 velocity gradients, Vu = (a J ) for
Xi
i,j € {1,2,3}. This implies
61/[[
dij = Cijre o

for some unknown scalars in the 4"-order tensor Cijke-

We shall now explore C;jxc. There are 4 free indices in C;jre, Where i, j, k, £ € {1,2,3} — there are
3* = 81 independent coefficients! However, we can simplify these coefficients, reducing them from 81
to 2.

* The fluid is homogeneous, i.e., o does not depend explicitly on x, C;;x¢’s are constant in space.

* By minor symmetry: C;jx¢ = Cjixe and C;jre = Cijex, which reduces the number of independent
constants from 81 to 36.

= By major symmetry: C;jxe = Creij, Which reduces the number of independent material constants
from 36 to 21.

* By fluid isotropy: fluid behaves the same in any direction, C; . remains invariant under rotations,
which reduces the number of independent material constants from 21 to 2; Namely, 1 and
Therefore, the stress tensor

_ . duy Ou, Bui)
in tensor notation oij=-pbi; +A6;;j— + + ,
( ) J = TP T oxy (axi Ox; (1.19)
(in vector notation) o=—-pl+A1(V-u)l+2ue,
where A is the bulk viscosity of the fluid and u is the dynamic shear viscosity.
In Equation 1.19, e = ¢;; is the strain rate tensor, given by
(in tensor notation)  e;; = L(Ouj, Ous
v 2 (’)x,- c’)x,- ’
‘ (1.20)
. . 1
(in vector notation) e=3 (Vu+(Vu)T).
We can also write e as a full matrix:
* In Cartesian coordinates
du  Lfouw ov) L(du dw
ox 2\0y ox) 2\0z Ox
6= 1(ou ov v 1 @.,.a_w (1.21)
2\dy ox ay 2\0z 0dy
L(u, ow) Liov, ow ow
2\0z Ox 2\0z Oy 0z



= In cylindrical polar coordinates

o, L( Gl | 10w\ L (0u  du,
or 2 or r 06 or 0z
| 1( 0(ug/r) 10u, 10ug u, 1({0ug 10u,
°= 2( ar ' r o0 r a0 7 2\az Trae ) | (1.22)
L(9uz , Our L(9ue | 10uz Ouz
or 0z 2\ 0z r 06 0z

* In spherical polar coordinates
6ur 1( 0(ug/r) 10du, 1( d(ug/r) 1 Ou,
—_— =%, +—— 3|7 +

or r 06 or rsinf d¢
1 6(u9/r) 1 ou, 1% ur 1 1 % N sin @ 0(u g /sin 9)
B 2 r 06 r 06 r 2 \rsinf 0¢ r a6
1 u¢/r) L du\ 1 1 %+ sin @ 0 (uy/sin 6) 1 6u¢ Uy +ugcotd
2 or rsin9 o 2 \rsinf 9¢ r 06 rsin 6 (9¢ r
(1.23)
Comments

= For an incompressible fluid, the bulk viscosity A does not contribute due to the mass con-
servation. In this case, the stress tensor

(in vector notation) o =—-pl+2ue,

al/tj 6”1 ) (124)

(in tensor notation) [j = —pOij+2ue;j =—pdij+u ( e ax]

In Cartesian coordinates, let uy = u, us = v, ug = w, the matrix form of o is given by

— +2 a_u a_u+a_v a_u+8_w
P ’”’ax K dy Ox K 0z 0x
ou Jv ov ov  ow
_ oL Yy —p+2u— — 1.25
7 (5y+5X) PTGy M(<92+<9y) (129
8_M+3_W @4_8_‘4} — +2 8_w
Mloz Tax| Moz Tay) P

Since we often consider incompressible Newtonian fluids, for which there is only one vis-
cosity parameter, , it is common to refer to the dynamic viscosity, or just viscosity.

Sometimes, it is more convenient to define the kinematic viscosity: v = y

* Normal stresses: From Equation 1.25, the normal stresses are the diagonal elements in
o

ou;
Onormal = —P +2u )
xl
(?v
However, if the fluid is incompressible, by the conservation of mass (contlnwty) a +
y

aw
Z

= 0; Therefore, we can simplify the normal stresses to onormal = —p-

13




= Shear stresses: From Equation 1.25, the shear stresses are the off-diagonal elements in
o

. Ou;
0%&)_

Tshear = Tij = [
shear ij ((%Cj ox;

Under scenarios/assumptions e.g. 2-D flow, or flow is fully developed in a certain direction,
we can further simplify the expression of the shear stresses.

* Inviscid fluids: An incompressible fluid is said to be inviscid if 4 = 0. The constitutive
law (1.24) becomes

(in vector notation) o =-pl,
. : (1.26)
(in tensor notation) oij = —poij,

and thus the stress in the fluid is not affected by the fluid motion. There are no truly inviscid
fluids in nature, but in certain cases, it is appropriate to approximate by an inviscid fluid,
for example for a fast-flowing, low-viscosity fluid.

—>X
| |

I 1

(@ (b)

Figure 1.2: The velocity profile of flow between two parallel plates when the fluid is (a) affected
by viscosity, (b) inviscid.

14




1.6 Non-Newtonian Fluids
Some fluids exhibit significant non-Newtonian qualities, as reflected in their constitutive relationship,
which describes them. Some categories of non-Newtonian fluids:

* Non-constant viscosity: the viscosity varies with the shear stress r [Pa] and shear rate y
[1/s]. The viscosity u = 67/67.

fluid \: T shear stress, 7
element - —_—
\N\ / ¥ shear thickening -
// // (00\6%’@0 Newtonian
Y / / '\(\g‘(\a _.
/ / o S T
Y / . g
’ / Y et shear thinning
wall =
shear rate, ¥

small angle approximation
tany =y

Figure 1.3: Left: the concept of shear strain y in a simple shear flow; Right: the rheological behaviour
of viscous fluids can be classified by the shear stress - shear rate (y = dy/dr) relations.

= Shear thickening: u increases with shear rate - e.g., cornstarch paste;
= Shear thinning: u decreases with shear rate - e.g., ketchup, blood,;
* Bingham plastic: a yield stress 7, impedes the fluid flow until 7 > 7.

* Viscoelastic fluids: These fluids have a memory, and in this case, the formula for the deviatoric
part of the stress tensor involves an integral over the previous states of the fluid.

= Anisotropic fluids: These are fluids that have different properties in different directions. A
physiological example of this is blood, which contains red blood cells. When the blood is flowing
the cells align, meaning the effective viscosity is much less in the direction of flow and more in
the transverse direction.

Blood Although the blood is frequently modelled as a Newtonian fluid, it exhibits shear-thinning be-
haviours. The non-Newtonian behaviours of blood are due to the cell suspension (rather than the
plasma), hence, the viscosity is hematocrit dependent.

The blood viscosity can be modelled by the non-Newtonian Carreau-Yasuda model: the effective
(apparent) viscosity u.g is expressed as a function of shear rate y (see plot below):

Hefr () = too + (10 — proo) [1 + (k7)1 "0,

where

* ug is the zero-shear viscosity,

-
o
N

* U is the high-shear viscosity, shear thinning

effects
= k is the characteristic time constant, \\/

-
S
N

* v is the shear rate,

”

eff. viscosity peg [Pa - s

* n, a are constants (“power-law index 10‘_2 1(‘)0 1(‘)2 10t
and “Yasuda exponent”). shear rate 4 [1/]

N
S
£y



1.7 Examples

We can find the stress 7 (the force per unit area experienced by the fluid) on a surface with unit normal
vector n using the formula (1.16), which states

t(n) = on.

Example: Shear flow

Consider an incompressible Newtonian fluid flowing in y > 0 in Cartesian coordinates (x, y, z)
in a uniform pressure field p = py with py constant, and whose velocity components are re-
spectively given by

u=ky, v=0, w=0,
(it may be shown these satisfy the Navier-Stokes and continuity equations). Find the stress
tensor at a general location. Hence find the stress at a general location on an imaginary surface
with unit normal vector n = (n,, ny). In this question, you may neglect gravity.

g [ =
/
L =
[ Y
/
| s
Iy
|4
X
Answer: The stress tensor is given by
o =—-pl+2ue,
where the rate-of-strain tensor e is given by
ou 1 (0u N ov
o ox 2\dy Oox _ 0 k/2
1 (0u N ov ov k2 0 )
2\0y ox ay
Hence the stress tensor o is given by
o=-pl+2ue= —po ky .
kp  —po

Thus for a general unit vector

Comments:

* For example with n = j, we have t = (ku,—pg). This makes sense as there is a back-
ground pressure pq pressing into the surface and a stress ku arising from the shear flow
and running along the surface.

= Likewise, if n = i, we have t = (—pg, ku). This formula cannot be compared with the
formula from Mechanics 2 Fluids as it would not be possible to put in a rigid surface with
normal n = i without changing the flow.
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Example: Poiseuille flow

Consider Poiseuille flow in a circular cylinder with velocity components
G
ur=0, ug=0, MZ:—(aZ—rQ),
dp

where G = -dp/0dz is the axial pressure gradient. Find the stress tensor at a general point and
comment on it.

Answer: We have the strain rate tensor given by (1.22) as

ou, 1 ra(ug/r) N laur 1 ou, N ou,
Br 2o\""ar “rae) 2\ "oz 0 0 _%
| 1 0(ug/r) 10u, 10ug u, 1(0ug 10u, 3 H
°= 2(r or ' r a8 r a0 ' r 2 (92+r(99 B ?}r 00 ’
1 ou, N ou, 1 Bﬂ N lc')uz ou, _@ 0 0
2\ or 0z 2\ 0z r 00 0z

and hence

o=-pl+2ue= 10 -p 0
—§Gr 0 -p

Incompressibility requires G to be constant, and hence p = pg — Gz, where pg is a constant,
and giving

1
-po+Gz 0 —§Gr
o= 0 —-po+Gz 0
1
—5Gr 0 -po+Gz

Hence for imaginary surfaces with normal vectors ¢, 0,7, respectively, the stress on the surface
is given by

1
t, =0t =(Gz—py) T — iGri,
to =00 = (Gz - po) 0,

1
t,=0z2=(Gz—pg)z-— EGrf*.

It is not possible to compare these formulae with the one given in Mechanics 2 Fluids, because
a rigid surface with the given normal vectors could not be put in, except for the case when we
find the stress at the wall (r = a) by setting the normal vector is n = —¢, which gives

1
t=-0of=(pp—Gz)f+ EGaﬁ,

that is a normal stress equal to minus the pressure and an axial shear stress Ga/2 (which is
—udu,/dr, as expected).
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2 The Differential Equations Governing Fluid Motion

2.1 Reynolds Transport Theorem

The continuity and the Navier-Stokes equation are derived from the Reynolds transport theorem
(RTT). RTT relates the rate of change of a conserved quantity (denoted by B), in a closed system,
to its rate of change within a control volume (CV) and its flux across the control surface (CS). RTT
states

of B in the
system

of B in control of control volume

( Rate of change )
volume via the surface

( Rate of change ) ( Net flux of B out )
+ .

Mathematically,
dBS stem a
—svstem _ 2 [ 5B dv + f pB(u-n) dA (2.1)

dt ot
cv Cs
where g = dB/dm is the amount of B per unit mass.
* For conservation of mass (continuity): B is the mass m, 8 =dm/dm =1,

* For conservation of linear momentum (Navier-Stokes): B is the linear momentum P = mu,
B =dP/dm =u.

Detailed derivations of the continuity and Navier-Stokes equations from RTT are provided in Ap-
pendix A.
2.2 Conservation of Mass

Using the fact that mass cannot be created or destroyed in a small control volume, and letting the
size of the control volume tend to zero, we obtain

ap 3
3 +V . (pu) =0. (2.2)

Incompressible fluids This is a fluid whose density p(x,t) is constant.
= Many liquids are approximately incompressible.
= The assumption of incompressibility is good for many physiological fluid flows.
For an incompressible fluid, the principle of mass conservation is equivalent to
V-u=0, (2.3)

which is the continuity equation.
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2.3 Conservation of Momentum

We use Newton’s second law, which states that the rate of change of momentum of a body equals
the force acting on it, and consider rates of momentum change in a small control volume. The forces
arising are due to the stress and any body forces acting on the fluid. Letting the size of the control
volume tend to zero, we obtain Cauchy’s equation,

ou; ou; aO—ij
— + Ltj— =

ot ax]' (9xj

(in tensor notation) o ( +pfi
(2.4)

(in vector notation) Jo ((;—l; + (u- V)u) =V.o+pf

where f is the body force per unit mass and o is the Cauchy stress tensor. The equation can be
simplified by replacing the left-hand side with the material derivative,

D) a(x) L0t )
Dr ~ar TV =G

(2.5)

Comments

= The material derivative seamlessly bridges the Lagrangian description (L.H.S. of Equa-
tion 2.5) and the Eulerian description (R.H.S. of Equation 2.5) of the fluid motion.

= Lagrangian description: keeps track of individual particles as they move through space;
“go with the flow”.

= Eulerian description: observe the rate of change of a property at fixed spatial locations.

Lagrangian Eulerian
t+ ot

fix in space

Substituting Equation 2.5 into Equation 2.4

. . Du; 00y
(in tensor notation)  p—s = 4 4 of
Dt 6)6,'
' (2.6)
. . Du
(in vector notation) Pp. = V-o+pf.

In each of Equations (2.4) and (2.6), the left-hand side contains terms arising from the momentum
balance, whilst the right-hand side equals the force per unit volume.

Decomposing the stress into the contributions from the pressure and the deviatoric part: o = —pI+2ue
(Equation 1.24), and if the fluid is Newtonian (constant u, hence separable from the derivatives),

Du;  dp 0%u;

in tensor notation =— +
( ) P Dt 8x,- ﬂ(‘)xjé?xj

+pfi
(2.7

. . D
(in vector notation) pD—l; =-Vp+uVu+pf,
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which yields the celebrated Navier-Stokes (N-S)? equation.

For Equation 2.7, it is frequently convenient to divide both sides by the density p to obtain

. . Du,- 1 (9p (921/[1'
In tensor notation _— = +Y——+ f:
( ) Dt p Ox; Vax,-axj /i

(2.8)

. . D 1
(in vector notation)  —— = —ZVp +vV2u+f,
Dt P

where v = u/p is the kinematic viscosity.

Comments

For Equation 2.8, expanding the L.H.S. (material derivative), and we may annotate

% ou; 10p %u;

Ui—=——7"—7—"+V + i
ot ]8xj o Ox; anan N Ji .
S~ —_— Y — ®

@ ® ® ®

® rate of change of speed (unsteady) @ convective acceleration
® pressure gradient @ diffusive (viscous) acceleration
® body force: gravitational, EM, etc.

- The equation can be viewed as 3 separate equations (in 3-D), one for each spatial com-
ponent.

- Term ® and @ together represent the material derivative of u, which is the total acceleration
of a fluid element.

- Term ® and @ represent the internal forces acting on a fluid element.

- Term ® is the external force acting on a fluid element. The most common choices for f are
f = g (if gravity is significant) and f = 0 (if gravity is unimportant).

- The N-S is non-linear due to the presence of the term @; as a result, expansion in basis
functions (e.g., Fourier series) leads to coupled modal equations, and the principle of linear
superposition does not apply.

- There are many possible formulations of the N-S equation. The abovementioned formu-
lation assumes the fluid is incompressible (constant p) and Newtonian (constant u, hence
v = u/p is also constant).

2named after Claude-Louis Navier (1785-1836) and George Gabriel Stokes (1819-1903).
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2.4 The Navier-Stokes Equations In Different Coordinate Frames

What do we solve? For a three-dimensional, isothermal flow regime governed by the N-S equa-
tion, the unknown quantities to fully characterise the flow fields are the velocity components u in three
directions, in addition to the pressure field p.

There are 4 unknowns, and from our experience, solving 4 unknowns typically requires 4 simulta-
neous equations. Therefore, in addition to the three Navier-Stokes equations in three orthogonal
directions, we need to solve the continuity equation as the fourth equation to obtain the deterministic
solution for u and p.

Depending on the geometry and symmetry of the problem, the governing equations may be expressed
in different coordinate systems. The most commonly used systems in fluid mechanics are the Carte-
sian, cylindrical, and spherical coordinate systems, as illustrated in Figure 2.1. An appropriate choice
of coordinate system can significantly simplify both the mathematical formulation and the analytical
or numerical solution of the governing equations.

z z z

(a) (b) (c)

Figure 2.1: Illustration of three commonly used coordinate systems: (a) Cartesian coordinates, (b)
cylindrical coordinates, and (c) spherical coordinates.

In Cartesian coordinates (x, y, z)

* The continuity equation:
ou Jv Ow

a"l‘aﬁ‘a—Z:O (29)

= The Navier-Stokes equation

ou ou ou ou 6p 0%u  0*u 0%u
— +v— — | = —+— e 2.10
(0[ “ox +v6y az) ax (6)62 " dy? T oz tel (2.10)

av ov av v 6p 0%v  9*v 9%y
— +v— —| = — + — , 211
(az Yox Moy T 62) oy " (5x2+5y2+3z2 ik N
ow ua—w+va—w Ow —6—p+ 82w+82w+82 +pf. (2.12)

ot ox 0Oy s 9z ox2  0y?  0z2 Pz '

Comments

Using tensor notation, we may write u; = {u1, us, us} and x; = {x1,x2, x3}. Here, specifically within
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the Cartesian coordinates, we write u; = {u,v,w} and x; = {x, y, z}.

In cylindrical coordinates (r, 6, z)

= The continuity equation

la(rur) N 1dug N Ou;

roor r 06 = 0z ’
* The Navier-Stokes equations
ou, N ou, +u_96ur o ou, _@
Pl T ar r 00 © 0z r
op 9 ur 2 Oug
= - V r- "o T o rs
or +ﬂ( r2  r2 (99)+'0f
Oug N Oug u_gaug Oug Urlg
ar "o o0 "oz Ty
10p 9 2 0u, ug
—;%‘F (V +—2%——2)+Pfa,
ou, Ou, ugdu, ou,
p(az e T e T ez

dp
= —a— +uv2uz +pr9
Z

(2.13)

(2.14)

(2.15)

(2.16)

Comments

* The V2(x) operator is known as the ‘Laplacian’ of the function (x). In cylindrical coordi-

nates,the Laplacian of a function A(r, 6, z) is given by

V2A:1i(6—A)+

* f = (f;, fo, f>) represents the body forces per unit mass acting on the fluid. In the case of

1924 02A

—— .
r or ’ or r2 0602 072

gravity, we set f = pg, where g = (0,0, —g) is the acceleration due to gravity.

(2.17)

In spherical coordinates (r, 6, ¢)

= The continuity equation

1 a(r?u,) N 1

6(u9s1n0)+ 1 duy

r2  or

bl

rsin 6 00 rsin@ d¢
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* The Navier-Stokes equations

2 2
(au, ou, ugaur+ ug Ju, ”¢+”9)

ot T or +T 00 rsinf 0¢ o
0P v -2 2 G ing o) s o, 2.19
or +,u( Y T 25 06 (g sin )+r281n9 ¢ tel (2.19)

OJug Oug + ug dug 4 Ug Oug N UyUg — I/t?ﬁ cot @
u 2

ot or r 060 rsinf 0¢ r
= _18_]9 +u (V2 0 Ug 2 Ou, 2cos Oug

_ Mo 20U 2C0SU UGN . 2.20
r2sin26 r2 90  r2sin%6 (9¢) plo (2.20)

Oug Oug uglug ug Oug Uiy +uggcotd
+— +
P ot or r 060 rsinf d¢ r
Ugp 2 Ou, 2cosO Oug
+
r2sin29 r2sinf d¢  r2sin?26 0¢

= — - —_— +/.l (V2M¢ - ) +pf¢, (221)

Comments

* The V2(x) operator is known as the ‘Laplacian’ of the function (). In spherical coordi-
nates,the Laplacian of a function A(r, 9, ¢) is given by

_ 2.22
r2sin 6 96 ( )

2
VQA:__(ﬁaA) 1 a( 6A)+ 1 9%4A

— nf— |+ —————.

or S0 ) T sz e 02

* £ = (fr. fo. f4) represents the body forces per unit mass acting on the fluid. Again in the
case of gravity we set f = pg, where g = (—g cos 8, gsin 6, 0).
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2.5 Other Transport Phenomena

Transport of heat, mass, and linear momentum share similar mathematical frameworks.

Transport of ... Governing Equation “Diffusivity” “Source”
oT . . .
Heat E+(u-V)T=aV2T+ST a=k/pcy, St =8,/pcy
ac 9 . .
Mass E+(u-V)C=DV C+Sc D Sc
ou 9 , ,
Momentum (N-S) E+(u-V)u:vV u+S, v=ul/p Sy =(-Vp+pf)/p

2.5.1 Transport of Energy

We can also use the Reynolds Transport Theorem to perform the conservation of energy in a small
control volume. The energy is the sum of the internal energy, kinetic energy and the gravitational
potential energy

A~ 1 2
e=i+-|ul"-g-x,
2|| g

where i is the internal energy per unit mass (which is often expressed as dit ~ ¢, dT) and g is the
acceleration due to gravity.

In the special case that the fluid is incompressible and Newtonian and that the specific heat ¢, is
constant and the fluid is homogeneous and isotropic, and, upon letting the volume of the control
volume tend to zero, we obtain the energy equation:

pCy (88—3 + (u-V)T) =kV T +®+38,, (2.23)

where

* ¢, is the specific heat at constant volume, which is the rate of change of internal energy of the
fluid with respect to temperature,

= T is the temperature of the fluid,

* k is the coefficient of thermal conductivity, which is the heat flux per unit area per unit temperature
gradient (by Fourier’s law, which is ¢ = —kVT where q is the flux of heat per unit area - cf. Fick's
law), and

= @ is the rate of heating due to viscous stresses, given by

ou\? av\? ow\? [(dv ou\®
q)—2,ueijeij—ll(2(a—x) +2(5) +2(6_Z) +(6_x+$)

ow  ov\> ou ow\’
—+ — —+ — . (2.24
+(6y+82) +((92+8x)) (2.24)

= S, is the energy production per unit volume per unit time.
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Comments

* In Equation 2.23, there is an extra term, @, representing the heating due to viscous stresses
in the fluid. It is the energy loss due to the viscous forces per unit volume of fluid per unit
time. Often, this term is neglected to give the usual advection-diffusion equation. In a
non-Newtonian fluid, the equation is significantly more complicated.

= Divide both sides of Equation 2.23 by pc,,, we can write

= a; Here, a is commonly
pCy
called the thermal diffusivity.

* The Prandtl number, Pr, is an important dimensionless number that measures the relative
importance of the viscosity to the thermal conductivity,

Pr=v/a,
where v is the kinematic viscosity.
2.5.2 Transport of Mass
The transport equation of mass is given by
ocC .
E+(u-V)C:DV2C+SC, (2.25)

where
= C is the concentration of the substance (solute) to transport,
* D is the (mass) diffusivity,

= Sc is the rate of production/consumption of the substance (the sign matters: a positive sign for
production “source”, a negative sign for consumption, “sink”).

Comments

= Under the special case where there is no advection (u= 0) nor solute production (S¢ = 0),

aC
— = pV2C.
ot

This equation is known as Fick’s second law.

= The Péclet number, Pe, is an important dimensionless number that measures the ratio of
convection to diffusion,

where U is the velocity, L is the characteristic length.
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2.6 Solving Navier-Stokes Equations Analytically

The continuity, Navier-Stokes and other transport equations are notoriously difficult to solve. In fluid
mechanics, a few problems have analytical solutions, meaning they can be solved exactly, e.g., the
solutions for Poiseuille flow, Womersley flow, and flow in a square duct.

In this course, we mainly deal with the special cases of the N-S equation — which typically involves
applying the assumptions to simplify the N-S equation and the continuity equation. The following
summarizes the possible assumptions:

. _O0u _dv _ow dp 0(x)
Steady flow: iR TR TR T =0, or o =0.
. . . . . 0(*) 0(*)
* One-dimensional flow (in x-direction only): By = 0 and 5, = 0 and (usually) v =w = 0.
b4

This can be generalised in any direction. For example, blood flow in arteries can be analysed
using a one-dimensional approach.

* Two-dimensional flow (in x-y plane): Z—u = ov = ow = op =0, or () =
b4

0.
8z 0z Oz 0z

Of course, this can be generalised to two-dimensional flow in the (x, z)- or (y, z)-planes and also
two-dimensional flow in the (r, 6)-directions in cylindrical polar coordinates. For example, we
may do a lab experiment between closely separated parallel plates to ensure that the flow is
approximately two-dimensional (Hele-Shaw cell).

Gur_aug_(')uz_(')_p_oor(')(*)_o

90 00 90 00 a0

= Axisymmetric flow:

In addition, if there is a symmetry in a plane that includes the axis, we would also have uy = 0.
This can be generalised to axisymmetric flow in spherical coordinates (using % =0).

. . 0 0
= Spherically symmetric flow: % =0and 6(_;) =0andug =ugy = 0.
0 .
* Fully developed flow: Ou = ov = ow =0, but ar # 0in general.
0z 0z 0z 0z

* Independence of a coordinate: For example, d/dx = 0 if nothing in the problem depends on
x and there is no reason to assume that anything should depend on x. We used this for the
Stokes boundary layer problem in Section 2.7.

* Periodic and sinusoidal flow (with period T):

iwt

ot L uo(x, y, 2)e 1,

u(x,y,z,1) =uo(x, y,z)e
v(x,y,2,1) =vo(x, y, 7)€" +vo(x, y,2)e ",

w(x, y,z,1) =wo(x, v, 2)e'" + wo(x, y, z7)e ¢,

iwt

+p0(x,y,z)e_ s

iwt

p(x,y,z,t) =po(x,y,2)e

where the angular frequency w = 2x/T. This assumption was made in the Stokes boundary
layer example covered in Section 2.7.

The trick is to look carefully at the problem and think which (if any) of the above assumptions might
be reasonable. We can try making them, and then check that the problem is still consistent. If it is
consistent that is fine, but if not, it means that the assumption was wrong.
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2.7 Examples

Example 1: Hagen-Poiseuille Solution

The Hagen-Poiseuille? solution states that the pressure drop Ap of an incompressible, Newto-
nian fluid flowing in a laminar regime through a long cylindrical pipe is given by
SuL

Ap = E=
P TR

-0, (2.26)

where L is the pipe length, R is the pipe radius, and Q is the volumetric flow rate (of the SI unit

[m?/s]).
Question: Derive Equation 2.26 by analytically solving the Navier-Stokes equations.

Answer: We shall first list out the essential assumptions used to simplify the equation.
Namely

1. Steady flow: M =0;
ot
2. Radial and circumferential components of the fluid velocity are zero: u, = ug = 0;
d(x)
3. The flow is assumed to be axisymmetric T =0;

. o 0
4. The flow is fully developed along the z-direction: 8—“ =0;
b4

Apply these assumptions to simplify the governing equations:

1 9(rus) N 18u{+ a)% _ g
r ~or r,/00 z
* The r-momentum equation:

P(%H@% r+%+u5% L —;Z
E)p 10 192 92 2 Ou
- ('3r lrar( ) %@4 ZZ ]l ﬂﬂoﬂ

* The #-momentum equation:

p(ﬁ%uﬁ/ so i, 6/ uru/)
0t or
2 2
z_lgﬁ 15 L L0 M/ %z%%
r ror\, r2ﬁ02 2 r2 00
* The z-momentum equation:
0 ow;  ug ous 0w
ol e /%/Z)
_ p auz 82 62
oz " [r (?r( ar Z@Q Ny MZE
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With these assumptions, the continuity equation and 8-momentum equations are trivially sat-

isfied (i.e., LHS=RHS=0). Further, for »-momentum equation, —a—p = 0 simply implies that the
r

pressure p is constant along the r-direction. Only the terms left in the z-momentum equation

need to be solved:

o= 6_p+ [16(8%)} - r@_p_c')(rauz)

“az THlrar\"ar wdz or\ or
Jxdr 2 gp du,
— ——+C1 =71
2u 0z or
Jxdr r? ap
= Uu,=-———+cilnr+co|
4u 0z

where c¢1 and c¢o are two constants subject to the boundary conditions:

* No-slip boundary condition: u, = 0 at r = R; and

Il
S

* Finite velocity at the centerline of the pipe (i.e., a flat velocity profile): % =0atr
r

L R?
which yields ¢; =0 and ¢y = ~ 1’ hence,
g7,

1 0
uz = 02 —R2)5—Z.

Assuming the pressure p decreases linearly from the inlet z = 0 to the outlet z = L, we may

. . .0 A
linearize the pressure gradient 8—‘0 = —Tp:
b4

1 Ap
Uu; = —@(1"2 —R2)T.

Now we can calculate the volumetric flow rate Q through the cross-section of the cylinder as

R 4
RA
Q=/usz=/ uz27rrdr:u,
0 8ﬂL

which matches the Hagen-Poiseuille solution as shown in Equation 2.26.

4named after Gotthilf Heinrich Ludwig Hagen (1797-1884) and Jean Léonard Marie Poiseuille (1797-1869).
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Example 2: Stokes Boundary Layer

In this question, you will investigate the flow field generated next to a flat oscillating plate.
Assume that the plate is at y = 0 with an incompressible Newtonian fluid of density p and kine-
matic viscosity v in y > 0, and that the plate oscillates purely in the x-direction with displacement
A coswti attime ¢, as shown in the diagram below.
y Fludiny >0
X

S S S S
Displacement A cos wt

You may also assume that the plate and volume of fluid are large enough that you can neglect
their boundaries (that is, the plate occupies the whole plane y = 0 and the fluid occupies the
whole of y > 0) and that the plate has been oscillating long enough so that the whole fluid is
oscillating periodically.

Question: Write down the equations and boundary conditions governing the flow.

Answer: The fluid is governed by the Navier-Stokes and continuity equations:

9 1
A (u-V)u=-—=Vp+vWu, V-u=0.
ot 0

At y = 0 the boundary conditions are

u=-Awsinwt, v=w=0.

Question: Write down assumptions about the components of the fluid flow and their depen-
dence on the spatial coordinates x, y and z. Use this to simplify the governing equations and
boundary conditions.

Answer: We assume this is a two-dimensional flow, with w = 0 and all components not
depending on z. In addition, we assume the velocity components do not depend on x (because
translating the problem in the x-direction is the same problem). Thus we have u(y,t), v(y,1),
w=0and p(y,t).

The continuity equation is

a_u + Q + 6_W =0
ox dy 9z
The first and third terms are zero by assumption, and therefore
0
2 0.
dy

Hence v is constant, and the boundary condition v = 0 at y = 0 implies that v = 0 everywhere.
The three components of the Navier—Stokes equation simplify to

2
0 040+0=0+v[0+L% 0],
ot dy?
19
0+0+0+0=--22 4y (0+0+0),
p Oy

0+0+0+0=0+v(0+0+0).
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Thus p is constant in space and the only non-trivial equation is

ou 0%u

o gy

together with boundary conditions u = —Awsin wt at y = 0.

Question: Assume that the flow and pressure are sinusoidal, that is u(x,) = U(x)e'“’ +
U(x)e '*" and p(x,t) = P(x)el“’ + P(x)e ¢!, Use this to simplify and solve the governing
equations to find the velocity field.

Answer: The periodic assumption simplifies to u = U(y)e'“! + U(y)e™'*! (the other compo-
nents are not needed). Substituting into the governing equation,

U 5o, U
dy? dy?

iwlUe?! — in(y)e—lwt =y —iwt

The coefficients of ¢!’ must balance and the coefficients of ¢’ must balance. Therefore

d*U — U
iwlU=v—-—, and -—-iwU = vd—U.
dy? dy?

These two equations are the complex conjugates of one another, so we only need to solve one
of them, which gives the general solution

iw _ Jiw
U=CieN V> +Che V77,

The function e@y — o0 as y — oo, and thus C; = 0. The boundary condition u = —Aw sin wt =
(Awi/2)e'“! — (Awi/2)e™ 1! at y = 0. Hence U = Awi/2, meaning that C; = Awi/2. Hence

"= A(Uie— loyiior AC‘)ie—,/’i’“’y—iwt
2 2

__Aw (e VEHiar _ =iV Ey-iar)
2i
(ei(—\/g)wwz) _ e—i(—\/gy+wt))
= —Awe VEY =
1

= _Awe V&7 sin (a)t — A /;y) .
v

Question: Sketch the velocity profile at time ¢.

Answer: The velocity profile is a sinusoidal function whose amplitude decays exponentially
with the distance from the surface.
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This is a famous exact solution of the Navier-Stokes equations, and the flow we have found
here is characteristic of the flow that exists near an oscillating boundary. Note that the flow
decays away from the wall, and for this reason, it is often described as a boundary layer, and
the solution is called Stokes boundary layer flow.
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3 Analytical Solutions of the Navier-Stokes Equations

In addition to the two examples provided in Section 2.7, in this section, we shall explore two analytical
solutions of the Navier-Stokes equations obtained under the physically and physiologically meaningful
assumptions and boundary conditions.

* In Section 3.1, we consider steady, fully developed laminar flow in a rectangular channel, for
which the velocity field can be derived following the principle of linear superposition.

* In Section 3.2, we examine the unsteady, pressure-driven flow in a rigid circular pipe, known
as the Womersley solution, which extends the classical Poiseuille flow to pulsatile conditions
commonly encountered in physiological flows.

3.1 Flow in a Rectangular Channel

Consider the flow in a rectangular duct (length L, width w, height ) in the Cartesian coordinate system
(Figure 3.1). We want to obtain an analytical solution to the flow profile within the rectangular channel.

y
I A __--y=h/2
Py

| | ! v <
: —= > X
|/////1 /// I
: H | | -y =-h/2
| J_/// E
I // '
- z=w/2

z=-w/?2

Figure 3.1: The schematic for the flow in a rectangular duct.

3.1.1 Problem Definition
Assumptions
* Fluid is homogeneous, incompressible and Newtonian with viscosity ¢ and density p;

* Flow has reached the steady state: du/dt = 0;

Flow is fully developed along the x-direction: du/dx = 0;

= Zero velocity along the y- and z-directions: v =0, w = 0;

Negligible body force: f = 0.

Boundary Conditions
= Symmetrical flow profile at y = 0 and z = 0;

* no-slip condition at the wall y = +h/2, 7 = +w/2.
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3.1.2 Solution Procedure

Step 1 Starting from the x-component of the N-S equation, apply the assumptions:

AR A S 2o

ap ’u  d%u
0=—-—— —+— 3.1
ax+ﬂ(ay2+az2 (3.1)
Similarly, we can apply the assumptions to the y- and z-components of the N-S equations, all terms
are cancelled out, leaving 0 = 0 on both sides.

Step 2 Equation 3.1 is nonhomogenous! To solve this equation, we further assume that the solution
is a combination of simple parallel plate Poiseuille flow plus some perturbation that is dependent on
the walls and finite width:

u(y,z) = uparabolic(y) + #(y,2)
N——
perturbation

and

8p aul?)arabolic (62¢ 82¢)

0=-22
ox ¥ dy? dy? 072

=0, Poiseuille solution

Since the first term is exactly the Poiseuille solution, the second term involves the derivatives of the
perturbation function must be 0; Therefore, we now only need to find the solution of the perturbation
function ¢(y, z) to solve u(y, z).

(82¢ 62¢) 0 (3.2)

dy? +5Z

Step 3 Equation 3.2 is homogeneous! We can then employ the separation of variable method, for
which ¢ is the product of a y-dependent function and a z-dependent function.

¢(y,2) =Y(y)Z(2)
Therefore,

0%y (y) 522(1)

OZ() +Y(y)

1 82Y(y)+ 1 8%Z(2)
CY(y) ay? Z(z) 072

Since each term is independent of the other term, therefore, we conclude that each term must be a

constant.
1 8% (y) 1 8%°Z(2)

Y(y) 0y? ~ Z(z) 9z
So far, We have decomposed the partial differential equation into two ordinary differential equations
(ODE). We will now address each of the ODE separately. The general solutions of Y(y) and Z(z) are

2 =-

Y(y) = Ay sin(dy) + Ag cos(Ay)
Z(z) = B1sinh(Ay) + By cosh(Ay)

where A4, As, By, By are constants subject to the specific boundary conditions.

33



Step 4 Solving Y(y):

= Applying the first y-related boundary condition: the flow profile is symmetrical at y = 0, this
implies that on the ‘tip’ of the velocity profile (maximum velocity), dY /dy = 0, yielding A; = 0.

* Applying the second y-related boundary condition: at y = +4/2, u = 0:

dy

h
— = —Asd sin (/l—) =0,
dyly_pn/2 2

since A, cannot be 0 (otherwise, the solution Y (y) is nontrivial!), we know sin (/l%) =0, implying
h  (2n+1n

A—

5 = 5 (= 14,), where n is a positive integer.

Step 5 Solving Z(z):

= Applying the first z-related boundary condition: the flow profile is symmetrical at z = 0, this
implies that on the ‘tip’ of the velocity profile (maximum velocity), dZ/dz = 0, yielding B; = 0.

Step 6 So far, the solution for ¢(y, z) is

$(3,2) =Y(1)Z(2) = ) A cos(dy) Bscosh(12)

3
—

Me

A, cos(Ady) cosh(Az). (3.3)

Il
—

n

where A, is a constant that combines A5 and B,,; however, what is the expression of A,? We apply
the final boundary: at z = +w/2, u = 0, this expression is equivalent to ¢(y, +w/2) = uparabolic-

< w 10 h\?
d(y,w/2) = ZAn cos(Ady) Bz cosh (/15) = Uparabolic = E%[)ﬁ - (5) } (3.4)

n=1

Looking at Equation 3.4, both sides only involve one variable y - hence we are (somehow...) reassured
that A,, can be found by integrating both sides of equation w.r.t. y from -4 to A.

Step 7 One more step to take before integration: we need to multiply both sides by a cos (%)

term - this step is essential to make both sides of the equation appropriately periodic.

from step 4 (where 2,, = W):

n

/2

00 h Amy w h Amy 1 dp ) h 2
;/_h cos (h_/2) Ap cos(Any) Bz cosh (/1”5) dy = /_h cos (h_/Z) % Ox y2 - (5)

On the LHS, due to the orthogonality of Fourier terms (cosine terms), all terms where m # n will
become 0! Only the term with n = m will remain, this will allow us to find an expression for coefficient
A

For simplicity, we write 1 =

dy .

3Yes, A,y = A, for m = n, but in our final expression the %g—i’ are separated and grouped with other terms, leaving an

A, as defined as shown below, hence, we use the subscript m to denote the solution from integration, to distinguish from
A, presented in our final solution.
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Step 8 This fancy expression finally yields a result of A4,,
_Lop_ Wy
" 2u dx Aaw)’
h

A2 cosh (

which concludes our solution procedure. Substituting back to the expression of «, our final solution

_ 1 8[7 2 h 2 = /1ny /an
u_2,u8x[y (2) nZ:(:)A,,cos(h/2 cosh 2|

h2(-1)" . 2n+1
where A,,, = # with 2, = M forn € Zsy.
3 n 2
A;, cosh 0

3.1.3 Result and Extended Quantities

* The analytical solution of u:
A Any Anz
2 n n
—1=] =) A4, nz h(Z222
’ (2) 2, Cos(h/z)cos (h/z)
= The flow rate Q is found by integrating u over the area,
apwhd| (h) < 5 Anw
=——|6{— A2 tanh -1].
Q ox 12p (w);)" an(h) }

Still, one needs to take 4~5 n-terms to obtain a sufficiently accurate solution of Q; A good
numerical approximation of Q (10% error for 4/w > 0.7):

op wh? h
~ ——|1-0.6274(—].
C~ % 12#[ (W)]

19

h2(=1)" 2n+1)m
U= _ A= —
2u Ox

’ n
A3 cosh ’l"TW 2

, Wwhere A, =

= The flow resistance R is found by QO = Ap/R:

R = A_p = 12'UL Phigh R Plow
r\| — NN\
Q wh3[1—0.6274(—)] ~rl Ve
w Ap

For more complex flow systems with multiple channels connected in series or in parallel (Fig-
ure 3.2), the total flow resistance Ryt can be calculated as follows:

" in series: Riotal = R1+ Ro + R3 + ...,

. 1 1 1 1
* in parallel: =—+—+—+...
Riotal Ry Ry R3
R, R, R, | —> R |
-_ T/
— —_— —_— e —> R, D —
' I |
—> R;

(a) (b)

Figure 3.2: Examples of multi-channel systems: (a) three channels connected in series; (b) three
channels connected in parallel.
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3.2 The Womersley Flow

We consider a long, circular cylindrical channel of radius a, and work in cylindrical polar coordinates
centred on the axis of the pipe. We want to obtain an unsteady analytical solution to the flow profile
within the channel. The Wormsley flow* occurs in pipes in which there is an imposed oscillating
pressure gradient; it is a good approximation to the pulsatile flow in the human cardiovascular system.

r
£) —
cosine ——> :

wave > -4=-=======-= -———
pressure —> ——=

Figure 3.3: The schematic of the Womersley flow in a pipe.

3.2.1 Problem Definition
Assumptions
* Fluid is homogeneous, incompressible and Newtonian with viscosity x4 and density p;
* Flow in a long straight tube, with a perfect circular cross-section at radius a;
= Axisymmetric about the z-axis: 9/96 = 0;
* The flow is fully developed along the z-axis: du/dz =0
= No swirls: ug = 0;

* No velocity along the radial direction: u, = 0;

Negligible body force: f = 0.

Boundary Conditions No-slip condition on the wall, flow symmetry about the centreline. The flow
is driven by a time-periodic axial pressure gradient.
3.2.2 Solution Procedure

Step 1 Starting from the z-component of the N-S equation, apply the assumptions:

ou, 8u_/z Uug Ou; oW\ 8uz 1 0% 82
p( ar " or +/§+u dz | r(?r rQZHQ ol

Ou, __8_p+ 10 (r(?uz)
0

p? 0z Hy or
which is the governing equation for the Womersley flow.

(3.5)

4named after John R. Womersley (1907-1958).
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. . 0p . . .
Step 2 For the Womersely flow, we hypothesise that the pressure gradient 8_p is sinusoidal:
z

0 Gy .
9 _ Gy cos(wt) = —2eie! (3.6)
0z 2

where Gy € R* is a constant, i = V-1 is the imaginary unit.

op . . . . . :
Why 6_p is a function of time? Consider what happens to the three terms in Equation (3.5). Easy to
b4
see

* u, is a function of r and r; p is a function of z.

o . . 0 .
= However, to maintain the equality of both sides, a—p cannot be a function a of z, thus p = A(¢)z +
b4

B(t), where A and B are unknown functions of time.

= For Womersley flow, we deliberately select A(¢) = —G cos(wt), yielding Equation (3.6). Note
the minus symbol here, since a negative pressure gradient is required to drive the flow from the
inlet to the outlet.

Step 3 We select a trial solution of u, of the form:
uz(r,t) = U(r)e'”, (3.7)

where U(t) is a complex-valued function (i.e. U < U). Substituting this into Equation (3.5), we obtain

i — Go i Go _; 1 (aU)\ ; 1o [ aUu\
piwle' " - piwlUe @ = Z2piwr 4 20 miwr —_( )6’1“’+ it

2 2 ﬂrar

ou
P 5tz dp
0z li(r auz)
r

Go 10 (0U\)| iws — Go 19 [ dU\| i
= {ple 2 ﬂrc’)r (rar)} +{ prwt 2 'urBr r(?r }e =0
. Go 1d{ dUu
= epUm 5y (d_) =0
d?U 1dU  iwp Go
—t—-——-—U=——. 3.8
Ty u v 2u (3.8)

Equation (3.8) is a linear, second-order, non-constant-coefficient, non-homogeneous ordinary differ-
ential equation for U.

Step 4 We can therefore solve Equation (3.8) as a complementary function U, plus a particular
integral Up,;. The particular integral is given by

Go
Upi = . 3.9
P 2iwp (3.9)
To find the complementary function, we must solve
d2Uy 1dUys  iwp
- - —LUs =0, 3.10
T u Uet =0 (3.10)

and substituting s = (1/—iw/v)r and simplifying, we remove the coefficients on the left-hand side to

obtain

204 1dU4
Tz T g U =0 (3.11)

This equation is the standard form of a special equation called Bessel equation.
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Comments: There are two linearly independent solutions for the Bessel equation, namely

i (—l)k X 2k+n
* Bessel function of the first kind: J,,(x) = —(—) .
P Kl(k+n)!\2

Jn(x) cos(nm) — J_,(x)

= Bessel function of the second kind: Y, (x) = Sin ()

1.0 = Jo(x) —Ji(x) —Jo(a)]
0.8 \

0.6
0.4
0.2
0.0
-0.2
-0.4

Jol2)

|— Yy(z) — Yi(2) - Yz(x)‘

0 5 10 15 20 0 5 10 15 20
T T

Figure 3.4: (a) Bessel functions of the first kind, J, /1 and J5; (b) Bessel functions of the second
kind, Yy, Y1 and Y, ( Wikipedia).

We therefore obtain the complementary function
U = C1J(](S) + CQY()(S), (312)

where C; and C, are constants of integration, and thus

_. _' G
U:Ucf+Upi=C1J()(1,£r NN / lwr + .0
v 14 2iwp
G
= Cuo (Va2 ) + Coty (Vo) + 22, (3.13)
a a/  2iwp

where the Womersley number « is a dimensionless parameter defined by a = a, /9_
14

Step 5 To find the constants C; and C, we apply the boundary conditions and regularity conditions
at the origin r = 0:

= At r = 0: The function Yy (x) tends to infinity as x — 0, so contributions from Y, ((+/—iw/v)r) are
not allowed, meaning that C, must be set to zero.

* At r = a: The no-slip boundary condition is u, = 0 at the wall for all times, which from Equa-
tion (3.7) means that U must also be zero at r = a. Substituting into Equation (3.13) gives

G
- 2iwpJy(V—ia) '
Hence
Gy Jo(N=iar/a)
= 1- , 3.14
2iwp Jo(V=ia) ) ( )
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and, substituting U into Equation (3.7), we get

L~ _1Go JO(\/_a/r/a)
‘ 2wp Jo(\/_a/)
CiGo [, Jo(®Pa)] ., (-D* (s
= 50r [1— NGRS ]e with  Jo(s) = Z A (—) : (3.15)

3.2.3 Result and Extended Quantities

The Womersley solution Equation (3.15) is defined in the complex domain; but for simplicity, we only
consider the real part to interpret its physical meaning.

1. The analytical solution u,:

iG Jo (32
Mz:%{l 0[1— O( 4

2wp Jo(i3/2a)

+00 2k
. (-Dk (s
wt — —
} with  Jy(s) = E a2 o
k=0
where J; is the Bessel function of the first-kind at 0™"-order.

2. The wall shear stress 7,,:

du, %{ a (J1(13/2a/))6p

fra =M ks 32\ Jo(i3/2a) ) 0z

dJo(s)
or '

ds

}, with  J1(s) = -

3. The flow rate Q:

o) = ‘/Oa 2nru,dr = ‘R{ - -

ipa?

na* 1 271 (3% ar) )(9]9}
aid/2]y(i32a) ) 0z )

The Womersley Number The Womersley number « is the ratio between unsteady inertia force and

vthe iscous force.

* @ < 1: Quasi-steady, the velocity profile is scaled Poiseuille flow, mainly observed in the mi-
crovasculatures (e.g., capillaries, venules);

= @ > 1: Oscillatory (a.k.a. plug flow), the velocity profile is balanced between viscous forces
at the wall and inertial forces in the centre. Common in large arteries (e.g., ascending aorta,
carotid artery).

(@) (b) (c)

Figure 3.5: Snapshots of sketches of Womersley flow profiles for various Womersley numbers. (a)
Low Womersley number (profile is Poiseuille flow multiplied by a time-dependent factor), (b) inter-
mediate Womersley number, (c) high Womersley number (profile is flat across the interior with a
boundary layer in which the flow oscillates rapidly).
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Application of Womersley solution How do we use the Womersley solution to model a more
complex flow? Since the Womersley flow assumes no convective acceleration, the solution is linear.
Therefore, we can break down any arbitrary flow waveform into the orthogonal bases, e.g., the Fourier
terms, with each mode being an independent Womersley solution, and superimpose all components
to reconstruct the Womersley flow (Figure 3.6).

orthogonal bases Womersley solution

flow waveform L reconstruction
¢ —u,

velocity, u 3y —— Uy

a —>u4

U

Figure 3.6: Schematic to decompose and reconstruct an arbitrary flow waveform using the Womer-
sley solution.

Limitations of Womersley Solution
= No convective acceleration is considered — no tapering of the vessel, no vascular distension;

* The Womersley solution assumes flow in a straight pipe — effects such as bending are not
considered,;

= No entrance effects are considered, and flow is assumed to be fully developed;

* The Womersley solution assumes flow is laminar.



4 Turbulence and Energy Equations

4.1 Turbulence

The Reynolds number The Reynolds number®, Re, is a dimensionless number that measures the
ratio of the inertial force to the viscous force. For tube flow,

< 2000, laminar
UD UD
Re = pT = = = 120003000, transient , (4.1)
> 3000, turbulent

where D is the pipe diameter, and U is the average velocity.

Comments

Although a high Reynolds number is often correlated with turbulence, the true cause is the
dominance of inertial forces over viscous forces - high Re merely reflects (but does not by itself
cause) that dominance.

Turbulence characteristics

* Random variation of fluid properties (e.g., pressure and velocities) in time and space. Each
property (e.g., velocity, pressure, kinetic energy) has a specific continuous energy spectrum
which drops to zero at high wave numbers (e.g., Figure 4.9 for turbulent kinetic energy);

= Eddies or fluid structures spanning a wide range of length scales, which interact and transfer
energy from large scales to progressively smaller ones; this process is known as the energy
cascade (Figure 4.1);

= Self-sustaining motion — once triggered, turbulent flow can maintain itself by producing new
eddies to replace those lost to viscous dissipation;

= Mixing — rapid convection of mass, momentum and energy, much stronger than laminar flows
(Figure 4.2).

Kolmogorov scale:
dissipation of turbulent
via molecular viscosity

OOOOO

11
11
11
I Taylor scale turbulent
kinetic energy cascades
down with time

Integral scale.
generation of turbulent
kinetic energy

Figure 4.1: Cascade of turbulence kinetic energy. The turbulence kinetic energy is generated on the
integral scale (large eddies) and dissipated on the Kolmogorov scale (small eddies).

Snamed after Osborne Reynolds (1842-1912).
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(@)

Figure 4.2: (a) High viscosity, low Re, the laminar flow behaves quasi-steady; (b) low-viscosity, high
Re, turbulent flow. (National Committee for Fluid Mechanics Films)

Reynolds averaging and turbulent shear stress Turbulence cannot be deterministically predicted.
It can only be characterised in a statistical manner by decomposing a certain flow quantity (e.g., ve-
locity) into the mean and standard deviation (fluctuation) components.

u(t) =i+ u' (1), (4.2)
where
1 T
= Average velocity: u = —/ u dt,
T Jo
= Velocity fluctuation: u’(z) = u(¢) — u.

Figure 4.3 demonstrates the velocity components from a 1-D turbulent velocity profile (u component
only).

%\M W i : :::\.\“M,fv,-\ J EE_ u’ (t )

u
Y
4

Figure 4.3: Turbulence velocity can be decomposed into the average component and the instanta-
neous velocity fluctuation.

With Equation 4.2, we can rewrite the x-momentum equation as (similar for y- and z-momentum
equations)

_— = = +_ —_ u/ul
th Ox ax’“‘ P

Dﬁ_&_ﬁ 0 [ Ou —
Ox

o ou —\ O ou ——
+—puy— —pu'v' |+ —|pu— —pu'w' | + , 4.3
3y (u 3y P ) 7z (u 5. P ) pfx (4.3)
where the pu;u;. terms are referred to as the Reynolds stresses or turbulent shear stresses (9 terms
in total). The total shear stress is the sum of the laminar shear stress and turbulent shear stress:

ou; —
T = Tlam t+ Tturb = ﬂTl_ — puu’. (4.4)
J

Quantitative characteristics of turbulence
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= Turbulence intensity, TI, measures how strong the velocity fluctuations are compared to the
mean flow (Figure 4.4).

For 1-D turbulent flow (z-component only):

u12

TI= —, (4.5)

u

where the numerator Vu’2 is the root mean square (RMS) of velocity fluctuation.

In the 3-D flow scenario (general form), TI can be expressed as

1

i— 1 1— — —
TI = — | Ui, = —\/—(u’2 +v2 +w2), (4.6)
Vuju; V3 V2 +92 42 V3

Note that TT is dimensionless, and it is often reported as a percentage.

t t

Figure 4.4: Two 1-D turbulent velocity profiles with identical mean velocity but different TT. Left:
low TT; Right: high TT.

= Turbulent kinetic energy, k, quantifies how much kinetic energy is contained in the velocity fluc-
tuations of a turbulent flow. Mathematically:

— 1 — — —
k= Eu:u: = §(u’2 +72 4+ w'2) 4.7)

Using Equation (4.6), TT can be written as

L e (4.8)

TI =
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4.2 Turbulent Boundary Layer

What is Boundary Layer? The boundary layer (BL) is a thin layer of fluid in the vicinity of the wall
in which the velocity rises from zero at the wall surface (no-slip) to the free-stream velocity (i.e., U in
Figure 4.5) away from the surface (along the y-direction in Figure 4.5). Outside the boundary layer,
the mean flow velocity is U.

BLs can be laminar, transition, or turbulent. As depicted in Figure 4.5, the laminar BL is a smooth, thin
layer; the turbulent BL contains swirls (eddies), and is generally thicker; while the transition boundary
layer is in between.

laminar > > turbulent
transition

Figure 4.5: Velocity boundary layer development on a flat plate. (Incropera et al.)

Turbulent Boundary Layer As shown in Figure 4.6, the turbulent boundary layer can be further
decomposed into 4 regions; from bottom to top, these are:

1. Viscous sublayer: the bottom layer closest to the wall, also
known as the laminar layer, where the viscous effects dom-
inate.

2. Buffer layer: on the top of the viscous sublayer, where the
flow begins to feel the effect of turbulence, although laminar
influence is still present.

3. Overlap layer: on the top of the buffer layer, also known as
the inner layer, where it is gradually phasing out the near- \vr y i 77
wall region > X

4. Outer layer: the edge of the boundary layer, the freestream Figure 4.6: Four regions of
turbulence effects dominate. the turbulent BL.

The viscous sublayer and the buffer layer are known as the near-wall region, which only comprises
about 15% of the total turbulent boundary thickness.

The character of the flow within these regions can be very different, e.g., the viscous effects are
dominating in the viscous sublayer, but the opposite in the outer layer. How does the velocity profile
vary within each region? The velocity-BL thickness relation is obtained by performing the dimensional
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% —

analysis: define the dimensionless pairs y* = yu—, ut = i* where u* = /1., /p is termed the friction
4 u

velocity (i.e., the velocity scale associated with the wall shear stress), v is the kinematic viscosity, u

is the mean turbulence velocity. The plot of u* versus y* is shown in Figure 4.7.

25 s
0 experimental data l /
o¥
Layer Range of y* u*-y* Relation 20 V
viscous
0<y"<5~8 tayt /
sublayer Y Y s | [/
J
5~8 <yt <30~
buffer layer ' (blended) ot /
70 10 L inner layer——|
overlap 30~70 <yt < . . // /
4 ut=1/klny*+B buffer
layer 10 ﬁ T layer
5
outer not strictly __/_ viscous
wake + > 10% . sublayer
( _ ) Y defined
region 0 ~ - ,
1 10 10 10 10
+ direction to pipe centreline
Yy —_—

(x and B are both empirical constants.) ) .
Figure 4.7: Typical structure of the tur-

bulent velocity profile in a pipe. (Mun-

son et al.)
For the outer region, one commonly adopted relation to describe the velocity profile is the power-law
relation: ~ Y
u ryl/n
—=(1- _) , 4.9
Ue ( R (4.9)

where u. is the centreline velocity; the value of n depends on Re, as the relation given out in Figure
4.8.

11

10 =
//
9 =
L~
n 8 ]
7 /
///
6 —
5
10* 10° UD 10°
Re = Y2
u

Figure 4.8: Exponent, n, for power-law velocity profiles. (Munson et al.)
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4.3 Energy Cascade in Turbulent Flow

A The mathematics in this section is optional and provided for further reading.

The progression, or breakdown of large eddies to small eddies, is referred to as the energy cascade.
Let k (= %u;u;) denotes the turbulence kinetic energy, £ denotes the dissipation rate of turbulence
kinetic energy,

* Integral scale: the largest scale where the turbulence kinetic energy is generated. It can be
related to the size of the system (e.g., 10% ~ 20% of the pipe diameter). The integral length L
and time 7, scales are

= Kolmogorov scale: the smallest scale which measures the size of the smallest eddies in the
flow regime. This is where the turbulent kinetic energy is dissipated via the molecular viscosity.
The Kolmogorov length n and time 7,, scales are

y3\1 v%
=|1—1 , Tp=1-1 .
g & " &

= Taylor scale: the intermediate scale between the integral scale and Kolmogorov scale.

> Turbulent kinetic energy is Turbulent kinetic
generated by large-scale energy is dissipated
features of the flow in this by viscosity in this
wave-number range wave-number range

Inertial Range \ ;

Turbulent kinetic energy per
unit time cascading down through
all wave numbers in the inertial range

e~u"IL

Energy per Unit Wave Number

Area under curve = Total kinetic energy
=3u'?2

/ Wave Number \

Integral-Scale Kolmogorov-Scale
Wave Number Wave Number
=2n/L =2n/n

Figure 4.9: Turbulent kinetic energy cascade as a function of wave number (~ 1/size of eddies). (P.
Aleiferis.)

When milk is poured into coffee, the moving milk and the surrounding coffee collide and create
an irregular motion that helps the two liquids mix quickly. Stirring with a spoon sets the whole
cup of coffee into motion, forming a large swirl. This large motion then breaks into smaller swirls,
which further spread the milk throughout the coffee, making the mixing fast and effective. This
is a typical example of a turbulent energy cascade!
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4.4 The Closure Problem

A This topic is optional and provided for further reading.

One key problem that remains unanswered is that the velocity fluctuation u;u} that appears in the
time-averaged form of the momentum equation is an unknown term. If we want to model or simulate
turbulence computationally, these shear stress terms must be resolved. How do we model the turbu-
lence then? We need an expression that bridges such unknown quantities to the known quantities,
and this is referred to as the closure problem.

Joseph Valentin Boussinesq (1842-1929) proposed that, instead of finding the Reynolds stresses, one
can alternatively find the turbulent viscosity. According to Boussinesq’s theory, the Reynolds stress
and the turbulent viscosity are linked through

—_ 2
uu', = ~koij —v; [

ou;  du;
i3 ’

+
Bxi 8)6]'
where v, is the turbulent viscosity; note that v, is a property of the turbulent flow, not the fluid (whereas
the kinematic viscosity v is a property of fluid). This is known as the Boussinesq approximation.

The standard k-e turbulence model (Launder et. al., 1969), is a good example of turbulence mod-
elling based on the Boussinesq approximation. In the solution procedure, the turbulent viscosity is
calculated from the empirical relations. Subsequently, two additional transport equations are solved
— one for turbulent kinetic energy k, one for turbulence kinetic energy dissipation rate ¢, in addition to
the continuity and momentum equations.
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4.5 Bernoulli’'s Principle and Energy Equation

The Bernoulli’s principle The Bernoulli’s principle® states that, for an incompressible, inviscid fluid,
if the flow is steady and laminar, the sum of pressure, kinetic and potential energy per unit volume is
the same between two points lying on the same streamline:

1 1
p1+ §pu% +pghy =po+ §pu% + pgho, (4.10a)

Equation (4.10a) is known as the pressure form of the Bernoulli’s principle (Figure 4.10).

— D2, Uy

DP1,U1 —
hy

Reference Level

Figure 4.10: Schematic of steady incompressible flow through a conduit between two cross-sections,
illustrating Bernoulli's principle.

Alternatively, dividing both sides of Equation (4.10a) by pg yields the same principle in the head form:

1 1
Pl 2 =224 — 2y, (4.10b)

pg 28 pg 28

where p/pg is known as the pressure head, u?/2g is the velocity head, and # is the potential (elevation)
head.

Comments

The term “head” in the context above refers to the energy per unit weight of fluid. Historically,
engineers measured energy as an equivalent column height of fluid — a ‘head’.

The Bernoulli’s principle can be interpreted as the perfect conservation of mechanical energy in fric-
tionless flow.

Pipe flow energy equation Yet, in reality, there is no perfect conservation of the mechanical energy.
Energy may dissipate by fluid friction with the rough walls, or due to a geometry change, such as
expansion, contraction, or bending along a pipe. This necessitates the inclusion of an additional loss
term to Equation (4.10), namely, the energy equation in the head form:
Lol =2 L, (4.11a)
pg 28 pg 28
where h; terms the total head loss, and can be further decomposed into the major head loss and
minor head loss:

hy = hL,major + hr minor-

6hamed after Daniel Bernoulli (1700-1782).
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However, the terms “major” and “minor” do not necessarily reflect the relative importance of each type
of loss. The minor loss can be larger than the major loss.

Also note that one can simply convert Equation (4.11a) into its pressure form,
1 1
p1+ 5/0“% +pghy = p2 + §PM§ +pgha +pght, (4.11b)
where the term pgh; = Apy is the pressure drop due to the head loss.

Major head loss The major head loss is the energy loss due to fluid friction, described by the Darcy-
Weisbach equation,
hr major = f£U_2, (4.12)
’ D 2g
where f is the (dimensionless) Darcy friction factor, L is the pipe length, D is the pipe diameter, U
is the average velocity. For the fully developed, incompressible flow in a circular pipe, f is typically
found as follows:

= If the flow is laminar, f = 64/Re;

= If the flow is turbulent, f is obtained from the Moody diagram’ (Figure 4.14), where the friction
factor is related to the Reynolds number and the relative wall roughness of the pipe, f (Re, %)

The major head loss leads to the pressure drop Apr major = P11 major-

Comments

= For laminar flow, the pressure drop calculated with the friction factor f = 64/Re coincides

SuLQ

ArRY’

= For turbulent flow, even for smooth pipes (do not neglect this trace in Figure 4.14!) the
friction factor is not zero. This is a result of the non-slip boundary condition, which requires
fluid to stick to the solid surface it flows over.

with the Hagen-Poiseuille equation, where Ap =

* For fully turbulent flow, i.e., Re is sufficiently high, f is nearly independent to Re, but only
depends on the surface roughness. This is because the viscous sublayer gets thinner as
Re increases, hence, ¢ dominates any near-wall flow character.

Minor head loss Energy losses can also be associated with the geometrical features of a pipe.
Examples are the bends and valves in a pipe system or changes in diameter (expansion or contraction)
along the channel, which consequently alter the flow pattern and lead to the minor head loss. Such
losses are commonly described using an empirically derived loss coefficient, K,

U2
hi. minor = KL2_, (4.13)
8
and by Ap = pghy minor, 1
Ap = §pU2KL- (4.14)

We shall now explore a few types of minor losses:

1. Pipes with a sudden, sharp-edged contraction or expansion: K, is related to the ratio of
the cross-sectional areas of two sections (Figure 4.11).

"named after Lewis F. Moody (1880-1953).
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Comments

In fact, by simple conservation principles in mass, momentum, and energy, the loss coef-
ficient for the sudden expansion (SE) can be derived analytically:

2
A
Ki sE = (1 - A_;) ,

where A; denotes the cross-sectional area upstream of the area change, and A, denotes
the cross-sectional area downstream of the area change. However, the loss coefficient for
the sudden contraction (SC) could not be derived analytically, but fit experimentally, one
possible option is

Ao
K ~042(1-—].
o -osafi-2

This prediction is valid up to the value A3/A; = 0.76.

2. Diffusers (a pipe device with a gradual expansion in diameter, used to decelerate the fluid flow):
K; is related to the ratio of the cross-sectional areas of two sections, as well as the cone angle
of expansion (Figure 4.12).

Comments

The head loss in a diffuser arises from wall shear stress and from incomplete pressure
recovery (how efficiently the kinetic energy is converted to the static pressure) caused by
flow separation.

By Figure 4.12, K; drops due to reduced friction when 0° < 6 < 15° — where a diffuser is
considered efficient; K; then increases sharply due to the flow separation, when the ad-
verse pressure gradients intensify; in this regime, the loss coefficient becomes comparable
to that of a sudden expansion.

3. Pipes with a bend: K; is linked to the ratio between the radius of pipe curvature and pipe
diameter, as well as the relative roughness values (Figure 4.13).

Comments

Note that Figure 4.11, Figure 4.12, and Figure 4.13 only apply to turbulent flow — You need to
calculate Re before reading values from the chart!
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Figure 4.11: Loss coefficient for the sharp-edged (a) contraction, (b) expansion. (Munson et al.)

1.4

90 120 150 180
6, degrees

Figure 4.12: Loss coefficient for a typical diffuser. (Munson et al.)
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Figure 4.13: Loss coefficient for a pipe with a 90° bend. (Munson et al.)
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5 Problems Involving Scaling

5.1 Nondimensionalisation and Buckingham-IT Theorem

In fluid problems, the aim is to express a physical quantity in terms of the relevant input variables and
parameters in the problem (e.g. lengths and geometry, material properties of the fluid, velocities, ...).
That is, we want to find a quantity Y in terms of k input variables {y1, y2, y3, ..., Y& }-

Y:f(yl’yQ"”vyk)' (51)

The Buckingham-II theorem states that, Equation (5.1) can be nondimensionalised into the form

Y= O Y20 (5.2)
where Y* denotes the nondimensionalised form of Y; yj, y3, ..., y; are the essential (minimum) ref-
erence dimensions required to describe yq, yo, ..., yr. Note that r < k, consequently, there will be

(k — r) independent dimensionless products (IT groups).

I = ¢(Tlo, M, ..T1_,). (5.3)

Comments

Nondimensionalising is a powerful tool in fluid mechanics for two main reasons:

= Efficiency: The number of parameters in the problem decreases. Thus each set of pa-
rameters in the nondimensionalised system corresponds to a whole family of parameter
values in the dimensional system. Thus every experimental result or numerical simulation
enables us to understand the system for a whole range of sets of parameter values (rather
than just one set of parameter values). In turn this either decreases the number of experi-
ments or simulations that need to be performed and/or increases our level of understanding
about the problem.

= Simplification: If the appropriate scalings are adopted, it often happens that one of the
nondimensional parameters is particularly large or particularly small. This usually means
that certain terms in the equations are dominant and others may be neglected (or at least
assumed to be small). Neglecting unimportant terms can mean we can make significantly
more progress in our analysis of the problem than would otherwise be possible. We will
see some examples of this in the rest of this section.

Reference Dimensions The dimensions of all the quantities y1, ..., yx are written as combinations
of reference dimensions, y7, ..., y;. The most common reference dimensions are [M] for mass, [L]
for length, and [T] for time.

For example, the dimensions for the velocity can be written as [L7 '] (cf. length/time). Alternatively,
in some cases (e.g., In subsection 5.2), the dimensions for the velocity is written as [U] which denotes

the velocity scale.

The dimensions of the common quantities are summarised in the following table.
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Quantity Symbol Dimensions \ Quantity Symbol Dimensions

Acceleration a [L'T72?] Surface tension o [M'T~2]
Angle 6, ¢,etc. 1 (none) Velocity U [L'T1]
Density o [M'L73] Viscosity U [M'L-1T~1]
Force F [M'L'T—2) Volume flow rate  Q [L3T~1]
Frequency  f [T71] Pressure p [M'L1T—2]

Example: Applying The Buckingham-II theorem

Objective Perform the dimensional analysis of the scenario where the pressure drops per
unit length along a smooth pipe.

Step 1 List all relevant variables in the objective equation to be nondimensionalised. Here,

Apl = f(D’p’:u’ U)’

where the pressure drop Ap; is a function of the pipe diameter D, the density p, the
(dynamic) viscosity u, and velocity U.

Step 2 List the dimensions of the variables. Let [M] denotes the dimension of mass, [L] denotes
the dimension of length, [T] denotes the dimension of time,

Ap; = [ML™'T?], w=[ML T
D = [L], U= [LT]
p=[ML™

There are k = 5 variables and r = 3 reference dimensions, we conclude there will be
k —r = 2 dimensionless groups.

Step 3 Suppose the first group involves Ap;, p, U and D. Let a, b, ¢, d denote 4 constants to be
determined,

Dp’veap! = |[LI“IMLP)[LT ) [MLT'T %) = [L]°[F]°[T]°}

Balance of [M], [L], [T] would give the simultaneous equations

(mass) b+d=0,
(length) a-3b+c-d=0,
(time) —c—-2d=0.
(3 equations with 4 unknowns = the equation system is underdetermined, we will not be

able to explicitly solve the numerical values of 4 parameters, but at least we will know
the relations between a, b, ¢, d.)

resulting in the following relations: a =0, b = —d, ¢ = —-2d. Hence, withd = -1, — a =0,

b—l, —2,
( )
AFI .

(Although we supposed that D might get involved in the first IT group, but by a = 0, T1; is
invariant of D.)

v\ .. .
Dp'U%Ap;t = (’Z—) is dimensionless, = |II;
Pl
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Step 4 Similarly, the second term involves y, follow the same rule, this yields | IT, = DU | which
—_— P

is 1/Re.
Step 5 Hence, we can express the result of the dimensional analysis as
pUZ _ (L)
Api pDU |
It expresses the idea that the dimensionless pressure drop solely depends on the ratio of

viscous force to the inertial force. In other words, the flow-induced pressure loss scales
with Re.

Comments

* By Ap; = f(D, p,u,U), the conventional way to investigate Ap; with each parameter re-
quires holding the others constant; i.e., when studying the Ap;-D relation, p, u, U must be
kept constant. If we make one plot for each parameter, there will be 4 plots in total.

. U?
* By Buckingham-II theorem, Py _ ¢ K
Api pDU
solely scales with Re, and all above information can be encapsulated into 1 plot.

, we know the flow-induced pressure loss

= This example shows how the dimensional analysis reduces the complexity, cost, and time
required to determine the relationship between a physical quantity and the other variables.

= However, we should note that each dimensionless group must hold a meaningful physical
interpretation.

Summary of common variables and dimensionless groups in fluid mechanics:

Variables: Acceleration of gravity, g; Bulk modulus, E,; Characteristic length, L; Density, p;
Frequency of oscillating flow, w; Pressure, p; Speed of sound, ¢; Surface tension, o ; Velocity, U.

Dimensionless

Name Interpretation Types of Applications
groups P yp Pp
pUL/p Reynolds number,  jnenia force Generally of importance in all types
Re viscous force of fluid dynamics problems
U/+gL Froude number, Fr ~ heraloce Flow with a free surface
Problems in which pressure, or
U? Euler number, E pressure force ) !
plp " inertia force pressure differences, are of interest
S Flows in which the compressibility
inertia force
Ule Mach number, Ma gompressiity orce of the fluid is important
inerti Unsteady flow with a characteristic
inertia (local) force
wL/U Strouhal number, St inertia (convective) force frequency of oscillation
et Problems in which surface tension
pUL/oy Weber number, We inertia force

surface tension force is important
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5.2 The Dimensionless Navier-Stokes Equations

In this section, we investigate common ways of nhondimensionalising problems in biological fluid me-
chanics. Assuming the body forces are insignificant, the Navier-Stokes and continuity equations (2.7)

and (2.3) are

0 1
a_ltl+(u.V)u: —-ZVp+vViuy, V.u=0. (5.4)
P

It is often the case that a problem in fluid mechanics has a typical (characteristic) length scale, L, and
a typical (characteristic) fluid speed, U. We naturally obtain the following dimensionless variables:

u t p
= —, = —, t* = —, * = -, 55
*=r "TU o P TR, (5-5)

where Py is the characteristic pressure scale to be determined later. Note that we use superscript * to
indicate corresponding dimensionless quantities. On substituting these into equations 5.4 we obtain

U .
*2_ % * * _
FV u, ZV -u”=0. (56)

U? (ou*
L \ o

. P
+ (u*- V*)u*) =-2vipt s
pL
Note that the differential operator V. must be nondimensionalised and also the derivative with respect

to time. Dividing equations (5.6) respectively by the factor in front of the viscous term and by U/L,
they become

R V)| = - Vip* + V*u* V*.u" =0. 5.7
e((’)t* + (u )u) GU/D) p*+V*u®, u (5.7)

where Re = UL/v is the Reynolds number.

We still need to choose the pressure scale Py, as there is no natural scaling for pressure. Usually,
we assume that the pressure gradient plays an important role in the problem, meaning that it is of
the same order of magnitude as the largest term in the equation; i.e., it depends on whether viscous
effects or inertial effects are more dominant.

U
Py = IJT max (1, Re) . (5.8)

In the case that the Reynolds number is very large or very small, this leads to considerable simplifi-
cation of the equations, which will be discussed in the next sections.

Comments

Since all the starred variables have an order of magnitude 1, O(1), we can see from (5.7) that
a physical interpretation of the Reynolds number equals the ratio of the typical acceleration of
fluid particles to the typical viscous force per unit mass.

Scaling for low-Reynolds-number flows (Re <« 1) In this case (5.8) gives Py = uU/L, and Equa-
tion (5.7) becomes

*

U VY| = -V e VR, Y ut =0, (5.9)

R
¢ ot*

Since the Reynolds number is very small, to leading order we may neglect the L.H.S. of the equation,
and the Navier-Stokes equation reduces to the Stokes equation:

V2t =V, Vi.ut =0, (5.10)
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Comments

* The Stokes equation is much simpler to solve than the Navier-Stokes equation, primarily
because it is linear.

* The Stokes equation can be rewritten using in terms of the vorticity: V2w = 0 - This is often
simpler to find the general solution! The derivation follows:

1. Redimensionalise the Stokes equation, yielding
uVu=Vp, V-.u=0.
2. Define the vorticity as w = V X u
uVu=-uVxw dueto Vxw=Vx(Vxu)=¥-a-Vu

3. Further, take the curl of uV?u = Vp:

VxVp =Vx (uVn) = 0 = —uVx(Vxw)
————
“curl of grad 0=-ul VYV -w-Veo ]

is zero”

by: Vx(VxA)=V(V-A)-V2A
0 = —u[V(V-Vxu)-Vw]

S —

“div of curl
is zero”

0 = V.

which can give a method to solve the problem (as discussed in Section 5.5).

Scaling for high-Reynolds-number flows (Re > 1) In this case, (5.8) gives Py = Re-uU/L = pU?,
and Equation (5.7) becomes

ou* 1
LN v AV v A V*Z # L ) )
e + (u* - VHu Vip©+ Re u’, Vi-u" =0 (5.12)

Since the Reynolds number is very large, to leading order we may neglect the viscous term, and the
Navier-Stokes equation reduces to

ou*
ot
Thus, to leading order, the fluid behaves like an inviscid fluid.

+ (VO = -Vt YV .ou =0 (5.12)

Comments

* Equations (5.12) represents a different type of differential equation from the scaled Navier—
Stokes equations (5.11), since the viscous term in (5.11) is the term containing the highest
order derivatives. In the absence of the viscous term, it is not possible to impose the usual
number of boundary conditions. It is usual merely to impose no-penetration (instead of
full no-slip) boundary conditions (which is the same as what we would do with an inviscid
fluid). Thus we require that no fluid flows through an impermeable wall, that is u; - n = 0,
where u, is the fluid velocity minus the wall velocity and n is the normal vector to the wall.
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= In practice, a thin boundary layer develops near the wall:

= At the wall, the fluid velocity equals the velocity of the wall (which is zero in the case
of a fixed wall), due to the no-slip boundary conditions.

= At the edge of the boundary layer, the fluid velocity equals the bulk velocity (that is
the velocity we calculated using the inviscid approximation with the no-penetration
boundary conditions).

= Within the boundary layer there are typically large gradients in the fluid velocity as it
changes between these values over a short distance.

If we require the details of the flow within the boundary layer (for example if we need to
calculate the shear stress that the fluid flow induces on the wall), we can use the following
method:

* Away from the walls, we solve the simplified Equation (5.12).

= Within the boundary layers, we cannot neglect the viscous terms, but we can make
scalings that simplify the equations considerably. This is because the boundary layer
is very thin, so we assume that the coordinate variable perpendicular to the wall is
much smaller than the coordinate parallel to the wall. The equations to be solved
within the boundary layer will be derived in Section 5.4. We then apply no-slip bound-
ary conditions at the wall, and matching conditions at the edge of the boundary layer,
which tells us both the width of the boundary layer and the flow profile within it.

In the rest of this section, we consider a few particular problems in fluid mechanics in which using
dimensional analysis enables us to either find a solution or to make significant simplifications of the
governing equations. In particular:

* Lubrication flows (Section 5.3): occurs when the domain of the fluid is long and thin, such that
velocity gradients normal to the boundaries dominate those in the streamwise direction, and the
flow is governed primarily by a balance between viscous stresses and pressure gradients.

* Boundary layer flows (Section 5.4): occur when Re > 1, where viscous effects are confined
to thin regions in the vicinity of the boundary. Outside this viscous dominant region, the flow is
governed by the inertial effects.

= Stokes flows (Section 5.5): occur when Re < 1, where the inertial effects may be neglected
relative to viscous forces, so that the flow is governed by a balance between viscous stresses
and pressure gradients.
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5.3 Lubrication Theory

A This topic is optional and provided for further reading.

Motivation The lubrication theory is a technique used to find an approximate solution when the do-
main of the fluid is long and thin. We use it because it results in a considerable simplification of the
Navier-Stokes equations. The basic assumption is that fluid flow properties vary much more quickly
across the layer than along the layer.

One moativation for this type of analysis is that it can be very difficult and costly to simulate long and
thin regions numerically because flow properties change so rapidly across the layer. However, the
thinner the region becomes, the more accurate the approximations presented in this section become,
and thus, it becomes a method of choice in extreme cases.

Derivation

y = ya2(t,x) = y1(1,x) + h(t,x)
Flowing fluid

y= }’I(I,x)
y
Flow profile Typical gap
x (typical speed U) Width kg

Step 1: Choosing the characteristic (scaled) variables For simplicity, we work in two dimensions
(x,y), with the following assumptions and constraints:

= The fluid flows in a channel whose typical width &, in the y-direction is much smaller than the
length L in the x-direction; their ratio ¢ = hy/L < 1;

= The side walls are at y = y1(¢,x) and y = y»(z, x), with the channel height 2 = y, — y; and hy
being a typical value of the function #;

= U is the characteristic velocity along the channel in the x-direction.

Therefore, the scaled variables are chosen as
x=Lx", y=hyy, tzﬁt, p =pop .

The only exception we will further discuss below is the pressure scale pg, as there is no natural scaling
to the pressure term.

Since U is the characteristic velocity along the x-direction, meaning that typical changes in the x-
component of velocity are of order U and hence a typical value of du/dx is of order U/L. By the

continuity equation:
ou dv _ 0

ox "oy
. 0 . 0 .
the order of magnitude of (9_: must be balanced by the order of magnitude of 6_; - hence, a typical
value of v is of order hyU/L. Thus we set

. hoU
u=U0u", v=—yv".
L
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Step 2: nondimensionalise the continuity equation We substitute the scaled variables into the
continuity and Navier-Stokes equations to get the system in terms of the nondimensional variables.
The continuity equation gives
ou 0Ov Uodu* hoU ov* ou* av*
=

T = - = =0. 5.13
0x * ay L ox* * hoL 0y* = ox* * ay* ( )

Step 3: nondimensionalise the x-component of the N-S equation The x-component of the N-S
equation becomes

Plar T"ox TVay) T Tax TH\ oz T 5y2
U2ou* U2 0w hoU? .0u*\  podp*
pl— +—u + v =—-—
L ot L 9dx* hol Oy* L ox*

U 0%u* N U &%u*
L2 Ox*2 h% ay*2 |’

Dividing by the coefficient of the viscous term §%u*/dy*?, that is, dividing by nU/h3, this becomes

ou’ ou* o
or* ox* Y ay*

ou” hipodp*  ,0%u* 0%’
=——————+s + ,
uUL Ox* Ox*2  gy*2

where Re = pUL/u is the Reynolds number of the flow. We call the parameter ?Re the reduced
Reynolds number associated with the problem, and typically in lubrication theory we assume it is
small £?Re < 1. If we also neglect the term whose coefficient is 2, which is expected to be small, we

obtain ) ,
h ES *
_ _Topodp” 0" (5.14)
uUL 0x*  dy*2

Step 4: nondimensionalise the y-component of the N-S equation Similarly, we nondimension-
alise the y-component of the N-S equations as

Plar T"ox T Vay) T Tay TH\ax2 T 5y2
h0U2 u* /’loU2 Lou* thQ *614*)__@8]9*

hoU 82u*  hoU 0%u*
+ u + v
L? or L2 = dx*  hol? Oy* ho Ox*

+ )
L3 0x*2  h2L Oy*?

If we divide by the same coefficient (for comparison with the x-component), ,uU/hg, this becomes

*

ov* N ov* o
u v
or* ox* oy*

ov* hopo Op* %u*  9%u*

&°Re V)= fopodp 304 0%
,uU ay* ax*Q ay*Q

We can neglect both the inertial terms, whose coefficient is £2Re, and the term with coefficient £3, as

these are both small compared to the term whose coefficient is . This gives

hopo Op* 92v*
=—— +te :

(5.15)

Step 5: Choosing the the pressure scale p, We have reduced the problem to the three nondimen-
sional equations (5.13), (5.14) and (5.15), and still need to choose the pressure scale pg. Inspecting
Equation (5.14) and (5.15), the scales that give balances in these equations are when p is of order
/JUL/h(Q) (balance in (5.14)) or order uU/hq (balance in (5.15)). Thus there are five categories for the
choice of the scale for po (po > pUL/hZ, po ~ pUL/R3, uU/hy < po < pUL/hZ, po ~ uU/hy and
po < uU/hg). In the following, we look at each of these choices, and their effect on Equations (5.14)
and (5.15):
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1. po> ,uUL/hg: Equations (5.14) and (5.15) become dominated by the pressure gradient terms;
thus to leading order

h2 * *

— _ﬂai = ap — 0,
uUL Ox* ox*
h * *

_ _hopodp”  _ 9p _0,
uU dy* dy*

and hence p* is uniform in space. Since only the pressure gradient comes into play in fluid
mechanics, this shows this scaling is the wrong choice, as to leading order there is no pressure
gradient.

2. po ~ pUL/h%: For simplicity let us choose po = uUL/hZ. Then Equations (5.14) and (5.15)
respectively become

ap*  0%u’ 10p* o%v*
__9r ’ =L L e 5.16
o dy*2 £ dy* " gﬁy*Q (5-16)
The term multiplying ¢ in the y-equation above can therefore be ignored, leading to
0=_9r" (5.17)
oy*

and therefore p depends on x and ¢ only. This scaling does not lead to a contradiction and is
thus a possibility.

3. po < ,uUL/hg (we can group the final three choices as we only need to consider Equation (5.14)):

Equation (5.14) is now dominated by the viscous term, and thus to leading order
ay*Q

This has general solution u* = ¢1 (¢, x*)y*+co(¢*, x*), where ¢; and c¢s are functions of integration.
We then apply no-slip boundary conditions at the side walls y = y; and y = y5 of the channel. If
the side walls are fixed, this will force both ¢; and ¢, to be equal to zero, as there are two zero
boundary conditions on the two sides. In turn, this means «* = 0, which is not possible as we
assumed that «* has an order of magnitude 1 when choosing the scale U. In turn, this means
that this choice of scaling is incorrect. Even if one or both side walls are moving, the boundary
conditions completely determine the values of ¢; and c¢2, meaning that the velocity can't have
the correct scale.

Thus, we are left with the only consistent choice py = uUL/h2, and we have the reduced set of
equations, derived from (5.13) and (5.16):
ou* ov* ap*  0%u*

=0, 0=-22,.2% 5.18
ox * ay* x5y (5-18)

where p* is independent of y*. Redimensionalising these, we get the lubrication equations

ou OJv ap 0%u

54-5: . = 54'[,[8—)]2,

(5.19)

with p independent of y.
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Step 6: Applying the boundary conditions Since p is a function of x only (and is independent of
y), we can integrate Equation (5.19b) with respect to y twice to get

where A(t,x) and B(t,x) are functions of integration that are set by the boundary conditions on the
two sidewalls, u =u; aty =y, and u = us at y = yo:

L 9p + Ay; + B, L 9p + Ays + B,
up = 2 a)’1 1 Uz = 2 a)’Q y2

which can be solved simultaneously to give expressions for A and B:

ug —ui  (yi1+y2)dp g Y2t yiuz  y1y20p

A = > - >
h 2u  Ox h 21 0x

and hence ( ) ( ) W
u -y)+tu -
=2 E R ERTIL O -y (- ). (5.20)
h  2udx
Thus « is composed of a linear part that satisfies the boundary conditions (the first term) plus a

parabolic part driven by the pressure gradient (the second term).

Step 7: Finding dp/dx There are two ways to proceed to find dp/dx:

1. If an expression for v is required, we can solve Equation (5.19) for v:

dv 1 0h
3y " W ox (u1(yz = y) +u2(y — y1))
Ouy dyz  Ous dy1
h8(2 ) +u =+ === y1) u26x)
1 9% 1 dp (dy2 Iy1
# g 020 0=+ - (226 - Ba o). G20

which can then be integrated (as it is an explicit function of y) to give an expression with one
constant of integration. The expressions get too complicated to write down now, though they
are typically simpler in the particular case that is to be considered. There are two boundary
conditions to be satisfied on v at the side walls: v = v; aty = y;andv = vy aty = ys. One
determines the constant of integration, whilst the other boundary condition leads to a second-
order ordinary differential equation for p. The red blood cell example below shows how this
method works.

2. Alternatively, if we don't require an explicit expression for v, we integrate the continuity equation
across the channel:

1 dy1 Oy +ﬁ %_'_aug 3 8%p  h? apah

ox  Ox 12u 0x2  4p dx Ox
and thus we get a second-order differential equation for p (which should be the same as the
one obtained by the first method):

d’p 3 ohop 12u

o=+ == (V1 —v2) + 6—(uz—u1)(

dy1  Oy2\  6u (Our dus
6x2 h Ox Ox h3

ox  or 8x+8 )=0. (5.22)
Either way, we end up with a second-order differential equation (5.22) for p, for which we should know
all the coefficients from consideration of the boundary conditions. We solve this and apply boundary

conditions at the ends of the channel to determine the unknown constants of integration.
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Comments

* This method was done in two dimensions, but can be straightforwardly extended to three
dimensions.

= In practice in a real problem, start from Equations (5.19) (or similar). These equations
would either be given in a question, or you would have to work through guided steps to
derive them (see examples in past papers). The algebra can get slightly hairy at times, but
the method is otherwise standard.

* When doing a real problem, both the value of & and that of the reduced Reynolds number
must be checked before assuming that the equations of lubrication theory hold. If they are
small, the relative error made in making this assumption is the greater of the two values of
£? and the reduced Reynolds number.

= If the reduced Reynolds number is slightly larger, that is £2Re < 1, but not small enough
that the inertial terms can be neglected, then we can improve the accuracy using a se-
ries expansion method, as described in Section 5.2, to find the velocity. We return to the
governing equations before we removed any terms: (5.13), (5.3) and (5.3). We substitute
the pressure scale pg = uUL/h2, and then remove terms that are multiplied by a factor of
order &2 with respect to the dominant term in each equation. This gives the equations
ou* ov*

=0, a
ox* " ay* @

ou*

2 * *

R + —t+ —F, b
e e ort* " ox* Y oy* ox* 6y*2 (b)

* * * 2. %
6u+ 8u):_8p 0°u

op*
0 = - .
- (c)

We set
2 2n.)°
u' =uj+e Reu’{+(8 Re) uy+ ...,
* * 2 * 2 2 *
vi=vgte Rev1+(8 Re) Vot
2 o)
p=po+e Rep’{+(8 Re) Pot....

Equation (c) gives us that all the p:'s are independent of y*. Then, solving for u; from
Equation (b), v from (a), uj from (b), v] from (a), etc in that order, we obtain the terms in
the series.
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Example: red blood cell

Cell travelling through capillary Enlarged view of shaded box
v
Cell y y = h(x)
——= velocity
U
X
L
<< —

Figure 5.1: Example of a scenario where lubrication theory may be applied. A cell moves
steadily with speed U along a vessel with a narrow gap at the walls.

We consider a red blood cell moving along the capillary shown in Figure 5.1 and find the flow
and pressure in the blood plasma filling the narrow gap between the cell and the vessel wall.
We make the following assumptions:

* The cell travels with constant velocity U parallel to the vessel wall.

= The flow is steady in the frame travelling with the cell (the cell travels as if it were rigid).
Usually, this is a good approximation, although, for example it excludes the period just
after the cell has entered the capillary.

= The gap is sufficiently narrow that we can model the wall of the vessel as a flat plate?.

For simplicity we work in Cartesian coordinates, we put the vessel wall at y = 0 and the boundary
of the cell at y = A, so that 4 is the width of the gap. The boundary conditions are

Aty=0: u=-U, v=0,
Aty=h: u=v=0,

(in the notation above, these give us y1 =0, yo = h, u1 = =U, us = vy = vy = 0).

To estimate the reduced Reynolds number we use the following approximate parameter val-
b.
ues®:

Parameter Symbol Approx. value
the typical velocity of blood cell U 1 mm/s
typical gap between cell and wall h 1um
plasma viscosity (approx. viscosity of water) v 105 m?/s
length of the capillary segment of interest ((approx. cell length) L 10 um

With these values, £ = 0.1 and &?Re = (h/L)>(UL/v) ~ (0.1)? x (1073 x 1075/107%) = 1074,
which is a very small value! Therefore we can solve the simplified lubrication equation (5.19)
to get (5.20),

__UM_L@ (h—y).

h 2u dx
We use Equation (5.19) to get (5.21),
dv Uydh 1 d%p 1 dp dh
-y T Ey(h- — =T
oy ot pa P TI anw”
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and integrating (subject to the boundary condition v = 0 at y = 0), we find that

_Uy*dh 1 d%p

©2h2dx 12u dx?

2
3h -2 .
i y)+4,udxdxy

Enforcing the boundary condition v = 0 on y = & leads to the relationship

1 p 1 1 2
= U%_,_ h3d_p+_h2@d_p_g% h3d_p+3h2%d_p)

T2 124 a2 du xdx 24k 12u |\ a2 dx dx
_Udh 1 d [ 3dp
T 2dx 12udx 7 dx )’

and, integrating the above expression with respect to x gives

dp ¢ —6uhU

TR R
where c is a constant of integration, which can be solved to find the pressure (note that 2 needs
to be specified to do this). In the case of a flat cell parallel to the wall, & is constant and so
dp/dx is also constant, and the pressure drops linearly along the vessel, at a rate determined
by the conditions at the ends of the cell.

4]t is not technically difficult to extend this analysis to allow for the curvature of the wall and the non-flat en-
dothelial surface.

bNote that most of these parameter values are quoted only as order-of-magnitude estimates because (1) these
parameters vary a lot between different vessels and different situations, and (2) only a rough estimate of £2Re
shows that it is well small enough to use the small-reduced-Reynolds-number approximations. The length L is hard
to estimate because it depends on the geometry of the vessel chosen. Here we take it as approximately 10 vessel
diameters
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5.4 Boundary Layer Analysis

A This topic is optional and provided for further reading.

Motivation As its name suggests, boundary layer analysis is used to analyse the flow near a bound-
ary of the fluid. This has important applications in many areas of engineering, because mechanical
problems, such as flow instability or separation, often begin in the boundary layer. Thus, analysing
the boundary layer flow can lead to a greater understanding of why instabilities or separation develop,
which may enable them to be avoided. The key to the analysis is to note that properties vary rapidly
as we move away from the boundary, but only moderately along the boundary. In this way, it is similar
to lubrication theory, and the derivation is very similar to that in Section 5.3. The main difference is
that the thickness of the boundary layer, that is, the analogy of the quantity / that was used in the
lubrication theory section, is now not fixed a priori (in the lubrication theory section # was fixed by the
geometry).

Another motivation for this field of study is that it is often challenging to simulate boundary layer anal-
ysis numerically because the flow properties change very rapidly there. Boundary layer analysis can
provide a way either to avoid needing to simulate the boundary layer, or to simplify the equations
there so that they are easier to simulate. In addition, boundary layer analysis can be combined with
another simplified analysis of the flow away from the boundary to provide a complete solution.

The history of boundary layer analysis can be traced back to the 19" century. Albeit the N-S equation
has been formulated early since the mid-1800s, it could not be solved except for the flow in simple
geometries (e.g., straight pipe). In 1904, Ludwig Prandtl (1875-1953) first proposed the boundary
layer approximation; in his idea, the flow is divided into 2 regions (Figure 5.2):

- outer flow region: flow can be approximated as inviscid and irrotational; the velocity field in this
region is solvable using the continuity equation and Euler equation (simplified from N-S equation
for inviscid fluid flow), and the pressure field is solved using Bernoulli’s theorem.

- inner flow region: flow near the wall, where viscous effects and rotationality cannot be ne-
glected. We need to solve the boundary layer equation.

—
— = : | : )
== A -~
/’///// - f \\\\\\\\
r;’:: ___________________________________________________________ T I
| freestream y . inner flow region I
I . outer flow region I
1 Vvelocity :
i e — — I
> — I
I — ' | — u=0.99U |
| U — I P |
| i 99 |
| — I :
: wall |
| X !

e e

Figure 5.2: A flat plate parallel to an oncoming flow. The near wall region is where the boundary
layer exists, where the viscous effects dominate and influence the flow. 599 denotes the boundary layer
thickness at which u = 99%U (i.e., 99% recovery of the free-stream velocity). Note that d99 is NOT a
streamline!
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For simplicity, we will assume a two-dimensional, steady flow near a flat boundary parallel to the
x-axis, although the theory can be straightforwardly extended to a three-dimensional, unsteady flow
near a non-flat surface. In this section, we will derive the width of the boundary layer and simplified
equations for the flow within it.

The velocity and pressure fields are governed by the equations

ou ou dp d%u
— v — | == = u—, 5.23
p(uﬁx+v6y) dx-i-#(?y2 (5.23)
du 9
a_;‘ + a_; =0, (5.24)

where the pressure p is a function of x only. Equations (5.23) and (5.24) represent a considerable
simplification of the full Navier-Stokes and continuity equations.

Boundary Layer Equation The boundary layer equation is an approximation to the N-S equation.
To derive such, we need to nondimensionalise the x-component of the N-S momentum equation.
Starting by defining the nondimensional variables

X:—, = —, u:—’ V:—’ = — = —

Y7 U v P T T o2

where L is the characteristic length scale, ¢ is the thickness of the boundary layer, U, V are the velocity
scales in the x- and y-directions, respectively. Py = pU? is the characteristic pressure, derived from
Bernoulli’'s theorem.

1. The nondimensional continuity equation is

Uou* Vou*
— — =0. 5.25
L ox* * o dy* 0 ( )

Note that, to satisfy the nondimensional continuity equation, the order of magnitude of the first
term must be balanced to that of the second term, i.e., % and % should be of the same order of

magnitude:

U \% u Vv
o(z)m(g)_o, - LY LY (5.26)

2. The nondimensional x-momentum equation is

(5.27)

U? ,ou* UV ,ou* U?0p* U (d*u* L?0%u*
—u +—V — ==ty + = .
L ox* & Oy L ox* L% \ox*2 62 0y*2

To further simplify this equation, we can take a few actions

= Use the relation derived from Equation 5.26 to eliminate V from Equation 5.27, i.e., UTV =
U . Us _ U2.

s L ~— L
* Multiply Equation 5.27 by the term L/U?.

So far, the nondimensional x-momentum equation looks like

(5.28)

Lou*  ou” op* 1 (BQu* L262u*)

+ =- t— |+ =—
o TV 8y T T ox | Rel\ax? | 52 9y2

Further,
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* We restrict the analysis to ‘narrow’ channels only: L/§ > 1.
* We are interested in the type of flow that Re > 1. This ensures that the 1/Re term is safe
to be eliminated.

So far, the revised nondimensional x-momentum equation looks like

ou* ou* op* 1 L?d%u*
* * =t —— : 5.29
e TV dy* ax" | Re 52 dy*2 (5-29)

The last question regards the term Re 52’ since 1/Re <« 1 but L/§ > 1, which term dominates?
We know the order of magnitude of the L.H.S. and the R.H.S. of Equation 5.29 must balance:

1 L2
o1)+0(1)=0(1)+0 (R 52)

2

Re 62

Obviously,O( 1L ) O(1). This means, % Re™'?2 =| 6 ~+Lv/U

3. Similarly, the nondimensional y-momentum equation can be simplified as

op*
dy*

(5.30)

Re-dimentionalise Equation 5.25, Equation 5.29, and Equation 5.30, which are the boundary layer

equations:
ou 0
(mass) Lo 0, (5.31)
ox 0Oy
6u au Bp (92u
- t = — 5.32
(x-momentum) 6x 6y ax 8y2 ( )
ap
(y-momentum) 5 =0. (5.33)
Comments

= The actual width of the boundary layer is not precisely defined; 6§ ~ +/Lv/U is only an
order-of-magnitude estimate. The point is that the flows well outside and well within the
boundary layer are qualitatively different from one another since different physical effects
play a dominant role.

* Boundary layer analysis is a huge topic in its own right, and we have only scratched the
surface here! For example, we could generalise this approach to include the following:
= dependence upon the third spatial dimension,
* time-dependence of the solution,
= gravity,
* turbulence,

* multi-layer boundary layers, in which different effects become important at different
distances from the surface,
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Boundary Conditions For the type of the flow as illustrated in Figure 5.2, the boundary conditions
are

u=U, atx=y=0
u=v=0, aty=0,x#0
u="U,

asy — oo

Displacement Thickness The boundary layer thickness, §99 can be difficult to measure directly.
One alternative approach is finding the equivalence of §y9 with the displacement thickness, 6, (x). As
illustrated by Figure 5.3(a), 61(x) is a thin plate that obstructs the inviscid flow (stagnant layer).

The expression of §; (x) is derived by mass conservation: equating the total mass flow at the inlet and
at the inviscid (unobstructed) region,

p/ u(x,y)dy=p/ Udy.
0 o1

Divide both sides by pU, then split the integral,

00 00 o) 00 51 00
p/ u'dy = / dy = / u*dy :/ dy —/ dy = |6(x)= / (1-wu")dy|.
0 51 0 0 0 0

Momentum Thickness The momentum thickness, 6-(x), is an alternative approximation of the
boundary layer thickness, for which 65(x) has the same momentum deficit as the actual boundary
layer profile, as shown by Figure 5.3(b).

Equating the ‘artificial’ momentum deficit created by ¢- to the real momentum deficit raised from the
velocity deficit, we have

d2 o 00

p/ U? dy =/ pou- (U-u) dy = 52(x)=/ w (1—u”)dy|
0 0 N 0

velocity deficit

—
momentum deficit by 62

Despite the abstraction that lies in the concept of momentum thickness, it is particularly useful in
finding the fluid drag and skin friction on the plate.
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( (a) displacement thickness

I __________ |
| y U inviscid flow |
Bl |
5 displacement |
| —] 5 thickness |
e
y actual flow | — |
I : ) 8,(x)
1 § I \vro. |
| Xu=099U L ——x |
> ~J
! ~Y
; 599 (b) momentum thickness
< 1 I __________ |
y
 —— | | U |
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| —] velocity
| : X deficit |
= |
| = |
I

. L > X

Figure 5.3: Two approximations of the thickness of an actual boundary layer: (a) displacement
thickness and (b) momentum thickness.

Example: Aorta

In the aorta we have U ~ 1 m/s, L ~ 0.5 m (length of torso), u ~ 0.004 Pas and p ~ 1,000 kg/m?3.
Thus R pUL 1000 x 1x0.5
e = =]

L 0.004

. L 0.5 % 0.004
We have a boundary layer of thickness “Hoo 22220 L 1073m = 1 mm. Thus
Up ~ \ 1x1,000

the boundary layer is about 1/40 of the diameter (1/20 of the radius) of the vessel. If we
did a numerical simulation of this, we would require several points within the boundary
layer (because we need to resolve on a scale much smaller than the width of the bound-
ary layer). Thus, we would need to use a mesh spacing of much less than 1/40 of the diameter.

~ 10°, which is the Reynolds number based on the length.

We have previously estimated Reynolds number based on the diameter for vessels, which -
in the case of the aorta (with diameter 4 cm) - would give Re ~ 10%! This is a good example
that illustrates the reason why it is important to specify on which dimension we are basing our
estimate of the Reynolds number (if it is not obvious).
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5.5 Flow Passing Around a Sphere

A This topic is optional and provided for further reading.

From subsection 5.2, we have derived the Stokes equation, as
2. _
uVaua=Vp.

The type of flow governed by the Stokes equation is known as the Stokes flow, or the creeping flow.
Possibly, the most famous example of the Stokes flow is the flow passing around a sphere, as shown
in Figure 5.4. In Bioengineering, Stokes flow could, for example, be the drag experienced by a near-
spherical swimming microorganism.

recirculation

Stokes (creeping) flow vortices in the wake

| |
| |
I _/\_> |
| |
= = 2
: Re << 1 : Re ~ 40
|
[ |

repeating patterns
of vortices

Re ~ 200
Karman vortex street

Figure 5.4: Flow passing around a circular obstacle at different Reynolds numbers. The top left
scenario depicts the Stokes flow when Re < 1 - note that there is no flow separation or vortices.

The analytical solution for the Stokes flow exists, albeit the U
derivation is cumbersome, which involves the use of the

streamfunction. The analytical result shows that the drag

force experienced by an object moving through a fluid at low Fd
Reynolds numbers is called the Stokes drag, and is derived

from the Stokes equations. On a sphere, the Stokes drag is

Fy=6muUa (5.34)
in the direction opposing the motion, which holds as long Fg
as pUa/u < 1. This is a famous classical result in fluid

mechanics.

Figure 5.5: Schematic of the
For example, the principle is used in a falling ball viscometer Stokes flow. The Stokes drug, F,,
in which a small spherical ball of known radius a and mass is balanced by the force of gravity,
m is dropped into a fluid, whose viscosity u is required to be Fy.
measured.

Once the ball has reached its terminal falling velocity U, the forces on it must be in equilibrium, mean-
ing that the force of gravity balances the drag force (Figure 5.5). Assuming the sphere is small enough
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and going slowly enough, and the fluid is viscous enough that the flow has a low Reynolds number,
the drag is given by 6ruUa and the force of gravity is mg, where g is the acceleration due to gravity.

Thus
mg

K= 6rva
and so, measuring the terminal velocity and substituting it into this equation gives an estimate of the
viscosity of the fluid.

Although Stokes flow occurs when Re <« 1, it is also worth noting that, at higher Re, additional
unsteady forces appear. As illustrated in the bottom sketch in Figure 5.4, the repeating
patterns of vortices in the wake region of the obstacle contribute to an effect known as vortex
shedding, which can generate oscillatory forces on the body and lead to flow-induced vibrations.

(5.35)

As such, in structural dynamics, damping mechanisms are often introduced to dissipate energy
and reduce vibration amplitudes. A well-known example is the tuned mass damper (TMD)
installed in the Taipei 101. As shown in Figure 5.6, a large auxiliary mass is suspended within
the structure and tuned to dominant vibration frequency of the building. When wind-induced
loads excite the tower, the TMD oscillates out of phase with the structural motion, absorbing
vibrational energy and thereby reducing the overall response of the structure.

E

Ei
L
=

st

Figure 5.6: The tuned mass damper in Taipei 101 Tower. (Wikipedia)
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6 Physiological Modelling

6.1 Lumped Parameter Modelling

Resistance, Compliance, and Inertance

Resistance Compliance Inertance

_ _cdr 99
0=Ap/R  Q=C3  p=L

= Resistance R: analogous to the electrical resistance, which models the dissipation of energy.
The flow rate Q is analogous to the electrical current (usually denoted by I), and the pressure
p is analogous to the electrical voltage (usually denoted by V).

* Compliance C: analogous to the electrical capacitor, which models the expansion of cardiovas-
cular chambers under pressure, allowing them to store more fluid.

* Inertance L: analogous to the electrical inductor, which models the inertial effects of the fluid.
When the fluid momentum is substantial, as the pressure on forward-flowing fluid reverses, the
fluid will not suddenly reverse its direction, but decelerate over a transient.

Example: Solving a Lumped Parameter Network

Consider the example lumped parameter network shown below,

... whichyields a linear system with 4 unknowns

i R; Po Ro 3 (p2, Q1, 02, Q3) and 4 simultaneous equations:
01 Q2 p2—p1=Ri01,
C
0 p3 — p2 = R20o,
3
. 03 =C(py - pi") A,
Pg = =
01 =02+0s.

Note that p;t_l) denotes the pressure p- at the previous time step 7 — 1; (pé” - pét_l))/At is an

approximation of the derivative of p w.r.t. ¢ in the backward Euler fashion.

The above linear system can be arranged into a matrix system, Ax = b,

1 -R 0 0 P2 P1

-1 0 =Ry 01|01 _| —Ps3

-1 0 0 &l |-V
0 -1 -1 -1((03 0

and can be easily solved by inversion of the coefficient matrix: x = A~'b.
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6.2 Windkessel Models

The Windkessel models are a category of lumped parameter models used to mathematically describe
the blood pressure waveform in the large, elastic arteries.

Historically, the term “windkessel” refers to the air chamber used in early German fire engines, which
temporarily stores energy by compressing air when fluid is pumped in and then releases that energy
to maintain a more continuous flow (Figure 6.1). By analogy, the arterial Windkessel represents the
ability of large arteries to store blood during systole through elastic expansion and to release it during
diastole, thereby smoothing the pulsatile output of the heart into a more continuous peripheral flow.

Canal Pump Windkessel Spout

Veins Heart Elastic arteries Peripheral
(Aorta) Resistance

Figure 6.1: The concept of the Windkessel. The air reservoir is the actual Windkessel, and the large
arteries act as the Windkessel. (Westerhof et. al., 2009)

A Kindly note that in the following notes, Z. and R are used to denote proximal (characteristic)
resistance and distal resistance in the Windkessel models; while in the lecture slides (and some
other materials), they are denoted as R, and R,. Conceptually and mathematically, Z. < R; and
R & R, are equivalent.

Two-element Windkessel Model
This is the “original” Windkessel model proposed by Otto Frank (1865-1944).

R Governing Equation:

dp(0)  p() _Q

p(t) e—>——

dt ~ RC C
L where C denotes the vessel compliance (elastic-
C ity), R denotes the peripheral (distal) resistance.

Three-element Windkessel Model

One ostensible limitation of the two-element Windkessel model is that it cannot accurately predict the
upstroke pressure waveform in early systole (i.e., the rise in pressure during early systole), but simply
the diastolic pressure as a monotonic exponential decay (i.e., p(t) = pinit - e */RE).
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In the three-element Windkessel model, a characteristic impedance component, Z., is introduced to
represent the impedance of the proximal large arteries. This element accounts for the instantaneous
pressure-flow relationship associated with wave propagation during early systole, thereby enabling a
more realistic representation of the systolic pressure upstroke.

R Governing Equation:
Zc
p(t) > }— dp(@) P _0f(), Zc), , dQ
Q 4{ & ' RC C1+R+Z°dt
C - where Z. is the characteristic impedance.

Comments

Rigorously, the term “impedance” governs how the pressure responds to the pulsatile flow;
whereas the term “resistance” characterises viscous energy loss under steady (or time-averaged)
flow conditions. Therefore, impedance generalises the steady pressure-flow relation to unsteady
flow and is frequency-dependent.

This is indeed the interpretation of the characteristic impedance, i.e., the unsteady, high-frequency
pressure-flow ratio set by proximal arterial stiffness and wave speed (which we shall discuss in

Section 6.3).

Derivation

For the full derivation of the three-element Windkessel model, consider the electrical schematic
annotated below: Q is the total flow, p, is the distal pressure defined at the junction of the RC
network.

R OR

p(1) Pd VVV >

°—|:|—H5 — Pret =0
Oc

C

Apply Kirchhoff's Current Law at node p,;: Q = Qg + Q¢. Moreover, since p(t) — pa = Z.Q0 =
Pd = p(l) -Z:Q.
= The flow passes through the distal resistance R is Qk:

Q _p_d_p(t)_ZcQ_p(t)_ZcQ
R=R ™~ R "R R

* the flow passes through the capacitor C is Q¢:
dpa _ . dlp(t) -Z.0] _ dp(?) do
= = = —_ ZC .
Qc=C dr ¢ dt ¢ dt ¢ dr
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Hence, the total flow Q is

0 =0r+0c
_p0) Z.Q _dp(t) dg
"R R +C dr CZe dr’

rearrange, we get
dp(o) , p(0) _ do
dr R dr
Divide both sides of the equation above by C, and we will get the final governing equation as
presented.

C

Zc
1+ — Z,
( + R)Q+C

Four-element Windkessel Model

The four-element Windkessel model is a further expansion of the three-element Windkessel model.
An inductor component, L, is introduced, in parallel to the characteristic impedance, to account for the
frequency-dependent relationship between pressure and flow, thereby representing blood inertance
and capturing variations in arterial pressure response with changes in heart rate (i.e., frequency).

Governing Equation:

Ztotal
: | dp  p(®) _Qf, . Ziota do
l Zc ‘ R —+——==[1+ + Ziotal —
| 1 &t RC C R total"qz
p(1) ‘ iwLZ. . .

o | ‘ where Zioia = M—‘ is the total impedance of
w ; iwL +Z.
| L | c = the parallel network - the characteristic impedance,
********** ! Z. and the inductor, L.

Derivation

Apply Kirchhoff's Current Law at node p;: QO = Qg + Q¢. However, we need to express pg in
terms of p(¢), hence need to solve the total impedance of the Z.-L parallel network:
1 1 1 27 fL+ Z, 27 fLZ,

=—+ = - Z =
Ziotal Ze i2nfL  i2nfLZ. total = o FL + Ze

Note that sometimes 2z f is denoted as w, which is the angular frequency. Now, p(t) — pg =
Ziota1Q. The rest of this derivation follows the same procedure for 3-WK.

What is the necessity of the inductance? The inclusion of the inductor better captures the
frequency characteristics of the flow.

* At the low f range: 27fL < Z., hence Zi., — 0, which removes the characteristic
impedance in the whole circuit;

= At the high f range: 2nfL > Z., hence Ziota — Zc.

This means the inductance has no effect when the flow is steady, providing a zero resistance
pathway to the rest of the circuit under steady flow conditions. This effect is shown in Figure 6.2.
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Figure 6.2: Left: the mechanical equivalence of two-element, three-element, and four-element
Windkessel models; Right: Comparisons between the clinically measured and modelled (using
the three Windkessel models) input impedance against the frequency variations. (Westerhof et
al)
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6.3 Moens-Korteweg Model of Pulse Wave Velocity

Pulse waves Blood is ejected into the aorta by contraction of the left ventricle, generating a rapidly
propagating wave of pressure (not flow) accompanied by deformation of the aortic wall. This wave,
also known as the pulse wave, travels along the arteries with a much faster speed (by orders of
magnitude) than the bulk motion of blood, and undergoes reflections at sites of impedance mismatch
such as arterial bifurcations and tapering.

Pulse
pressure central
Psystolic |----———————————----—4 pulse pressure
; waveform

SN
wave - \ reflected
3 \  wave
~

-

Pdiastolic Time

time to eg. < vessel bifurcation /
reflected wave tapering

Figure 6.3: Schematic of the formation of the central arterial pressure waveform. The total arterial
pressure results from the superposition of the forward-travelling wave (blue) generated by ventricular
ejection and the reflected wave (red) arising from impedance mismatches in the arterial tree.

How fast does the pulse wave travel? Adriaan Isebree Moens (1846-1891) and Diederik Korteweg
(1848-1941) derived an expression of the pulse wave velocity, PWV, linked to the distensibility of the
aortic wall:
PWV = [— 6.1
V=43 Ro’ (6.1)
where E denotes the linear elasticity of the aortic wall, # and R are the lumen thickness and radius,
respectively, with 7 < R; and p is the density of the blood. The Moens-Korteweg model assumes the
blood to be inviscid.

By definition, PWYV increases with the stiffness of the vessels and decreases with the vessel radius.

Derivation
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Figure 6.4: The schematic for the derivation of the Moens-Korteweg equation.

Equation1l Assume the arterial wall has an isotropic linear elasticity (constant Young’'s modulus,
E). Therefore, the stress(o)-strain(e) relation is

_ (27(R+AR) —27R) AR
€= 2R R

AR .
O':E{S:E? W|th

Applying Newton’s 2" Law and rearranging the expression leads to an expression of the pres-
sure,
MyallQwall = Fpressure — Fyall

0=2RL Xp—-2Lh X = = — = —AR.
p 7 p R R?

Differentiating p w.r.t. ¢, this leads to equation 1,

op _EhOAR
ot R2 Ot |

Equation 2 Integrating the continuity equation over the vascular cross-sectional area

0, axis-symmetrical
larur_*_l@ +8uZ:O R /(l(’)rur_*_ﬁuz)aA:O

r or 00 0z r or 0z
r=R -
10 0
= / N onrar + iR2ZE = 0
r=0 \r or 0z
26ﬁz
= 2nRur +nR"—= =0.
0z
Re-arrange leads to the equation 2,
R du,
Uy = ——
r 2 6Z >

where the notation u, denotes the average z-velocity across cross-section.
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Equation3 Assume negligible convective acceleration and no viscous losses, the Navier-Stokes
z-momentum equation can be simplified as,

0
ou, Ou, ugdu uz\
p(az T AT 0 T e | T
:) p%:_a_p .
ot 0z

L . 0AR . . .
Derivation of PWV First, let u, = TR this equates equation 1 and equation 2 and leads to

equation 4
ROu, OAR R?0p _ 0 2R dp
u:———:—:——, = -
" 2 0z ot  Eh ot 0z Eh Ot
R
equation 2 equation 1 equation 4

Next, differentiate equation 3 and equation 4 w.r.t. z,

%: dp  differentiate 0%u, B d%p

p ot 0z Wort. ¢ p@taz T

% _ 2Rdp  (differentiate 0%u, 2R 0%p

9z  Eh ot wrt. ¢ dz0t  Eh 012’

which allows us to equate the R.H.S. as

d’p _ 2Rp d’p _ 0’p _ Eh 0’p
922 Eh 02 a2 2Rp 0z2’
N——

c2

. . Eh
which can be subsequently rearranged as the wave equation. Denote the term 3R = ¢?, for
0

which the term c is the expression of the wave speed of pressure (a.k.a. pulse wave velocity,
PWYV).

Example: Moens-Korteweg equation

Pressure transducers spaced 1 cm apart axially are deployed in the aorta, and then in the
brachial artery of a healthy human. Based on the arrival times of the peaks of the pressure
waves, the time delay between signals from the two transducers is measured as 0.05 s for the
aorta and 0.01 s for the brachial artery.

For the aorta, diameter = 2 cm, wall thickness = 0.1 cm. For the brachial artery, diameter
= 6 mm and wall thickness = 0.3 mm. You may assume a blood density of 1 g/cm?.
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/=1cm
faora = 0.05 s
Forachial = 0.01's

Dyoria =2 cm
Dyyychizy = 6 mm

Phlood = 1 g/em3

1
\ Raora = 0.1 cm

Pyrachial = 0.3 mm

Question:
= Estimate the elastic moduli of these two vessels;

= Explain differences in their values based on your knowledge of artery wall structure.

Answer: From the Moens-Korteweg equation,

Eh 2pRc?
c=4—7 = E-= ,
2pR h

where c is wavespeed, E is the elastic modulus, R is radius, & is wall thickness.

= Aorta: The measured wavespeed is

4 lcm
SRS — = 20 5
Caorta foota  0.05s cm/s
and thus (1 g/fem? 192
2X (1lg/ecm?) X (1cm) X (20cm/s
Eoorin = g/cm”) 0(1 ) X ( = 8,000 5.
.lcm cm s

= Brachial artery: The measured wavespeed is

£ lcm
a1 = = =100 cm/s,
Corachial = 3 il 0.01 cm/s
and thus
_2x(1 g/cm?) x (0.3 cm) x (100 cm/s)? B
B spwaital - 0.03cm A

= The brachial is stiffer (higher elastic modulus) than the aorta, due to its higher collagen and
smooth muscle cell content, whereas the aorta has more elastin.
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Appendix A Derivations of Continuity and Navier-Stokes Equations From
Reynolds Transport Theorem

A.1 Reynolds Transport Theorem

To elucidate the concept of the Reynolds Transport Theorem (RTT), we consider a control volume
(CV) initially filled with a quantity B that flows at a fixed speed u. After some time, portions of B
initially inside the volume move outside and new portions of B enter, as depicted by Figure A.1.

control volume, CV

At time t At time t + At

Figure A.1: Movement of a physical quantity B by fluid flow from inside to outside of the control
volume.

Regions in Figure A.1 are

- I: the entire fluid system within CV at time ¢
- II: new fluid that has entered CV at time ¢ + At
- 1lI: portion of fluid system that remains inside CV at time 7 + At

- IV: portion of a fluid system that is outside of CV at time ¢ + Ar

By conservation of the quantity B in the CV, “how much out must be balanced by how much in”,

Bsystem|t+At - Bsystem|l =B+ By — By

change of B in system

=(Bur+Bir—-B;) + (Brv-Bp)
~—— —

change of B in CV Net amount of B
leaving CV due to flow

Bsystem|t+At - Bsystem = BCV|t+At - BCVIt

Term A Term B
+ Net amount of B leaving CV due to flow

Term C
Divide each term by Ar, and limit the change in time to infinitesimally small: Ar — 0.

Term A: rate of change of B within the system (Lagrangian description)

lim Bsystem|t+Az - Bsystemlt _ stystem
At50 At de

Term B: rate of change of B within CV (Eulerian description)
| Bevliar = Bevle _ 9Bey _ 0

i = — dv,
Azlino At ot ot / PP
Y
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dB . .
where g = T is the amount of B per unit mass.
m

Term C: rate of change of B within CV as it is lost by fluid flow (Eulerian description)

Net amount of B leaving CV due to flow .
Alim0 A7 g = rate of B leaving CV due to flow
t—

- § pp(u-i) da

CSs

where (u - n) quantifies the velocity component in the direction of the normal vector .

By equating Term A = Term B + Term C,

dr ot
cv

stystem 0 N
—em 2 [ pBdV+ G pB(u-h) dA | (A.1)
CS

which is the final expression of RTT.

of B in control .
of control volume

Rate of change )
volume

Rate of change Net fi ¢ B out
In other words, of B in the N ( et flux of B ou
system

A.2 Conservation of Mass

For the following derivations, an infinitesimally small cube positioned in the Cartesian coordinate
system is selected as the CV. The length of the edges is ¢, hence, the coordinates of the two diagonal
nodes are (xg, yo, z0) and (xo+46, yo+6, 20 +6), respectively. A surface on the cube has an area A = §2,
the cube has a volume V = 63.

z
A O  (xg+8,y0+6,20+8)
5
o
A
> X
/(xo, Yo, Zo)

y

Figure A.2: Control volume used for the analysis.

Expressed in the language of RTT, mass conservation simply means the overall rate of change of

mass is 0. Here, the physical quantity ‘B’ is mass, m; hence, following the definition, 8 = j—:; = S—Z =1
Mathematically,
0:%/pdV+‘7§p(u-ﬁ)dA. (A.2)
cv Cs

To evaluate the first integral in Equation A.2, assume the variation of the density p is negligible within

the CV, hence, / pdV ~ pV = ps3. Differentiate the integral w.r.t. the time ¢,
cv

9 d(pd®)  50p

g ~ =320 A3

az/ pdvar —g—= =05 (A-3)
CV
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To evaluate the second integral in Equation A.2, we need to count the flow passing through the sur-
faces in three orthogonal directions. For the x-direction, the velocity component is u,, the inlet and
outlet surfaces are positioned at x = xo and x = xo + 8, respectively; therefore,

X=x0+6 _ B
‘;{pux dA = (Pux52) e ((pux)lx:xo+6 (pux)|x=xo ~ 638(/)”)()‘ (A.4)
x=x0 0 0x
cs
Similarly, for flow in the y-direction and z-direction, the surface integrals are
0
}I{ puy dA ~ ('5?’%, (A.5)
Cs Y
?{puz dA ~ 53%. (A.6)
b4
Cs
Combine Equation A.4, A.5, A.6,
. 0
%P(u -h) dA = 63 dpuy) , Oouy) | Ilpus) , (A7)
Ox dy 0z

CS

or, in vector notation,
j{p(u -n) dA = 63V - (pu).
Cs

Substituting Equation A.3 and Equation A.7 into Equation A.2 yielding the celebrated continuity equa-
tion

%ﬁv%-@m = %ﬁv-mm:o. (A.8)

For incompressible fluid flow, the density p is constant, i.e., it is invariant of time and space. This
allows us to separate such a term from any partial derivatives in the equation, yielding the form

0~6°

V-u=0. (A.9)

A.3 Conservation of Linear Momentum

. . . dP
The linear momentum is the product between the mass and the velocity, P = mu. Hence, 8 = s u.
m
By RTT, the conservation of linear momentum is

0
F= P / pu dV+‘?§‘pu(u -n) dA. (A.10)
(64 CS

The L.H.S. of Equation A.10 is the total force exerted on the same CV as shown in Figure A.2. The
total force can be further decomposed into

- The internal force that acts on the surfaces of the CV. It is comprised of the hydrostatic force
that raises from the pressure load from the fluid flow; and the deviatoric force which is due to
the fluid shear as the fluid moves with a velocity.

2
Finternal = _va + V:uv u.
—— ~———
hydrostatic  deviatoric

(Note that the “force” we mentioned here is force per unit volume [N/m?] - hence, we multiply
the volume to recover the actual force of the unit Newton.)
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- The external force acting on CV that may be due to the presence of gravity, electromagnetism,
etc.
Fexternal = mf = pr

Hence, the total force
F = Finternal + Fexternal = V(_Vp + ,uv2u + pf), (A-ll)

You may recognise the expression enclosed in the bracelet in Equation A.11 is the R.H.S. of the
Navier-Stokes (N-S) momentum equation.

The first integral on the R.H.S. of Equation A.10 is evaluated following the same fashion as demon-
strated in the derivation of mass conservation. Assume change of p and u is negligible within the CV,

f pudV ~ puV = §3pu, hence
Ccv

0 9(8°pu) _ 30(pu)
E‘/pu vV x = = (A.12)
Ccv

The second integral on the R.H.S. of Equation A.10, we first consider the flow passing through the
surfaces at the x-direction only, i.e., u - i = u,, leading to

X=xo+0 puuxlx:x _puuxlx:x +0 8(,011”)()
‘}l{ puity dA = puu, 6> =63 ( 0 2 ~ 6 . (A.13)
2 x=x0 o 0x
Similarly, for flow in the y-direction and z-direction, the surface integrals are
0
% puu, dA ~ 53%, (A.14)
cs
f puu, dA ~ 53‘9('08—”;”9. (A.15)
cs
Combine Equation A.13, A.14, A.15,
2 [0 L) O(pu 0
jz{ pu(u-n) dA ~ & ( (’;';” ) 4 (pay”y) 4 (";'l“z) . (A.16)
cs

Substituting Equation A.11, Equation A.16, and Equation A.12 into Equation A.10, neglecting the
common term V = 63 from both sides, yielding the expression of the N-S momentum equation

B d(puuy) 0 9
(pw) | dpuuy) O(puuy)  d(puus) _ _Vp + uV2u + pf. (A.17)
ot ox dy 9z

One final step to take is rearranging the unsteady and convective acceleration terms on the L.H.S. of
Equation A.17. We can assume the fluid is incompressible, allowing us to separate p from the partial
derivatives. Therefore,

d(pu)  Ou
or P
d(puuy) 0(uuy) Oy ou
ox P ox :p(ax“”‘xa)’
O(puuy) d(uauy) Ouy, ou
ox oy :p(ﬁ‘””%)’
0(puuy) o(uuy) ou, ou
oz oz :p(a_zu-kuza_z)‘
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Substitute the revised expressions into Equation A.17:

ou ou ou ou

11+p(—+btx a—
Z

ot ox 2 dy

+

+ = -Vp + uV?u + pf,
5 9 p+uViu+p

or in compact form,

P ((Z—‘; + (u-V)u) = —Vp +uV?u+pf.

which is the final expression of the N-S equation that we are all familiar with.
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