
DR
AF
T

Derivations of Navier-Stokes Continuity and Momentum
Equations From Reynolds Transport Theorem

Binghuan Li
binghuan.li19@imperial.ac.uk

September 12, 2024

1 Reynolds Transport Theorem
To elucidate the concept of the Reynolds Transport Theorem (RTT), we consider a control volume (CV)
initially filled with a quantity 𝐵 that flows at a fixed speed u. After some time, portions of 𝐵 initially inside
the volume move outside and new portions of 𝐵 enter, as depicted by Figure 1.

Figure 1: Movement of a physical quantity 𝐵 by fluid flow from inside to outside of the control volume.

Regions in Figure 1 are

- I: the entire fluid system within CV at time 𝑡

- II: new fluid that has entered CV at time 𝑡 + Δ𝑡

- III: portion of fluid system that remains inside CV at time 𝑡 + Δ𝑡

- IV: portion of a fluid system that is outside of CV at time 𝑡 + Δ𝑡

By conservation of the quantity 𝐵 in the CV, “how much out must be balanced by how much in”,

𝐵system|𝑡+Δ𝑡 − 𝐵system|𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
change of B in system

= 𝐵𝐼𝐼𝐼 + 𝐵𝐼𝑉 − 𝐵𝐼

= (𝐵𝐼𝐼𝐼 + 𝐵𝐼𝐼 − 𝐵𝐼 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
change of B in CV

+ (𝐵𝐼𝑉 − 𝐵𝐼𝐼 )⏟⏟⏟⏟⏟⏟⏟⏟⏟
Net amount of B

leaving CV due to flow

𝐵system|𝑡+Δ𝑡 − 𝐵system⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Term A

= 𝐵𝐶𝑉 |𝑡+Δ𝑡 − 𝐵𝐶𝑉 |𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Term B

+ Net amount of B leaving CV due to flow⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Term C

Divide each term by Δ𝑡, and limit the change in time to infinitesimally small: Δ𝑡 → 0.

Term A: rate of change of 𝐵 within the system (Lagrangian description)

lim
Δ𝑡→0

𝐵system|𝑡+Δ𝑡 − 𝐵system|𝑡
Δ𝑡 =

d𝐵system

d𝑡 .
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Term B: rate of change of B within CV (Eulerian description)

lim
Δ𝑡→0

𝐵𝐶𝑉 |𝑡+Δ𝑡 − 𝐵𝐶𝑉 |𝑡
Δ𝑡 = 𝜕𝐵𝐶𝑉

𝜕𝑡 = 𝜕
𝜕𝑡 ∫

𝐶𝑉

𝜌𝛽 d𝑉 ,

where 𝛽 = d𝐵
d𝑚 is the amount of 𝐵 per unit mass.

Term C: rate of change of B within CV as it is lost by fluid flow (Eulerian description)

lim
Δ𝑡→0

Net amount of B leaving CV due to flow
Δ𝑡 = rate of B leaving CV due to flow

= ∮
𝐶𝑆

𝜌𝛽(u ⋅ n̂) d𝐴,

where (u ⋅ n̂) quantifies the velocity component in the direction of the normal vector n̂.

By equating Term A = Term B + Term C,

d𝐵system

d𝑡 = 𝜕
𝜕𝑡 ∫

𝐶𝑉

𝜌𝛽 d𝑉 + ∮
𝐶𝑆

𝜌𝛽(u ⋅ n̂) d𝐴 , (1.1)

which is the final expression of RTT.

In other words, (
Rate of change of
𝐵 in the system ) = (

Rate of change of
𝐵 in control volume) + (

Net flux of 𝐵 out of
control volume ) .

2 Conservation of Mass
For the following derivations, an infinitesimally small cube positioned in the Cartesian coordinate system
is selected as the CV. The length of the edges is 𝛿, hence, the coordinates of the two diagonal nodes are
(𝑥0, 𝑦0, 𝑧0) and (𝑥0 + 𝛿, 𝑦0 + 𝛿, 𝑧0 + 𝛿), respectively. A surface on the cube has an area 𝐴 = 𝛿2, the cube
has a volume 𝑉 = 𝛿3.

(��, ��, ��)

(�� + �, �� + �, �� + �)

Figure 2: Control volume used for the analysis.

Expressed in the language of RTT, mass conservation simply means the overall rate of change of mass
is 0. Here, the physical quantity ‘𝐵’ is mass, 𝑚; hence, following the definition, 𝛽 = d𝐵

d𝑚 = d𝑚
d𝑚 = 1.

Mathematically,

0 = 𝜕
𝜕𝑡 ∫

𝐶𝑉

𝜌 d𝑉 + ∮
𝐶𝑆

𝜌(u ⋅ n̂) d𝐴. (2.1)
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To evaluate the first integral in Equation 2.1, assume the variation of the density 𝜌 is negligible within the
CV, hence, ∫

𝐶𝑉
𝜌d𝑉 ≈ 𝜌𝑉 = 𝜌𝛿3. Differentiate the integral w.r.t. the time 𝑡,

𝜕
𝜕𝑡 ∫

𝐶𝑉

𝜌 d𝑉 ≈ 𝜕(𝜌𝛿3)
𝜕𝑡 = 𝛿3 𝜕𝜌

𝜕𝑡 . (2.2)

To evaluate the second integral in Equation 2.1, we need to count the flow passing through the surfaces in
three orthogonal directions. For the 𝑥-direction, the velocity component is 𝑢𝑥, the inlet and outlet surfaces
are positioned at 𝑥 = 𝑥0 and 𝑥 = 𝑥0 + 𝛿, respectively; therefore,

∮
𝐶𝑆

𝜌𝑢𝑥 d𝐴 = (𝜌𝑢𝑥𝛿2)|
𝑥=𝑥0+𝛿

𝑥=𝑥0
= 𝛿3

(
(𝜌𝑢𝑥)|𝑥=𝑥0+𝛿−(𝜌𝑢𝑥)|𝑥=𝑥0

𝛿 )
≈ 𝛿3 𝜕(𝜌𝑢𝑥)

𝜕𝑥 . (2.3)

Similarly, for flow in the 𝑦-direction and 𝑧-direction, the surface integrals are

∮
𝐶𝑆

𝜌𝑢𝑦 d𝐴 ≈ 𝛿3 𝜕(𝜌𝑢𝑦)
𝜕𝑦 , (2.4)

∮
𝐶𝑆

𝜌𝑢𝑧 d𝐴 ≈ 𝛿3 𝜕(𝜌𝑢𝑧)
𝜕𝑧 . (2.5)

Combine Equation 2.3, 2.4, 2.5,

∮
𝐶𝑆

𝜌(u ⋅ n̂) d𝐴 = 𝛿3
(

𝜕(𝜌𝑢𝑥)
𝜕𝑥 +

𝜕(𝜌𝑢𝑦)
𝜕𝑦 + 𝜕(𝜌𝑢𝑧)

𝜕𝑧 ) , (2.6)

or, in compact notation,

∮
𝐶𝑆

𝜌(u ⋅ n̂) d𝐴 = 𝛿3∇ ⋅ (𝜌u).

Substituting Equation 2.2 and Equation 2.6 into Equation 2.1 yielding the celebrated continuity equation

0 ≈ 𝛿3 𝜕𝜌
𝜕𝑡 + 𝛿3∇ ⋅ (𝜌u) ⇒ 𝜕𝜌

𝜕𝑡 + ∇ ⋅ (𝜌u) = 0 . (2.7)

For incompressible fluid flow, the density 𝜌 is constant, i.e., it is invariant of time and space. This allows
us to separate such a term from any partial derivatives in the equation, yielding the form

∇ ⋅ u = 0. (2.8)

3 Conservation of Linear Momentum

The linear momentum is the product between the mass and the velocity, P = 𝑚u. Hence, 𝛽 = dP
𝜕𝑚 = u.

By RTT, the conservation of linear momentum is

F = 𝜕
𝜕𝑡 ∫

𝐶𝑉

𝜌u d𝑉 + ∮
𝐶𝑆

𝜌u(u ⋅ n̂) d𝐴. (3.1)

The L.H.S. of Equation 3.1 is the total force exerted on the same CV as shown in Figure 2. The total
force can be further decomposed into

- The internal force that acts on the surfaces of the CV. It is comprised of the hydrostatic force that
raises from the pressure load from the fluid flow; and the deviatoric force which is due to the fluid
shear as the fluid moves with a velocity.

Finternal = − 𝑉 ∇𝑝⏟
hydrostatic

+ 𝑉 𝜇∇2u⏟
deviatoric

.

(Note that the “force” we mentioned here is force per unit volume [N/m3] - hence, we multiply the
volume to recover the actual force of the unit Newton.)
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- The external force acting on CV that may be due to the presence of gravity, electromagnetism, etc.

Fexternal = 𝑚f = 𝜌𝑉 f.

Hence, the total force
F = Finternal + Fexternal = 𝑉 (−∇𝑝 + 𝜇∇2u + 𝜌f). (3.2)

You may recognise the expression enclosed in the bracelet in Equation 3.2 is the R.H.S. of the Navier-
Stokes (N-S) momentum equation.

The first integral on the R.H.S. of Equation 3.1 is evaluated following the same fashion as demonstrated
in the derivation of mass conservation. Assume change of 𝜌 and u is negligible within the CV, ∫

𝐶𝑉
𝜌ud𝑉 ≈

𝜌u𝑉 = 𝛿3𝜌u, hence
𝜕
𝜕𝑡 ∫

𝐶𝑉

𝜌u d𝑉 ≈ 𝜕(𝛿3𝜌u)
𝜕𝑡 = 𝛿3 𝜕(𝜌u)

𝜕𝑡 . (3.3)

The second integral on the R.H.S. of Equation 3.1, we first consider the flow passing through the surfaces
at the 𝑥-direction only, i.e., u ⋅ n̂ = 𝑢𝑥, leading to

∮
𝐶𝑆

𝜌u𝑢𝑥 d𝐴 = 𝜌u𝑢𝑥𝛿2
|
𝑥=𝑥0+𝛿

𝑥=𝑥0
= 𝛿3

(
𝜌u𝑢𝑥|𝑥=𝑥0−𝜌u𝑢𝑥|𝑥=𝑥0+𝛿

𝛿 )
≈ 𝛿3 𝜕(𝜌u𝑢𝑥)

𝜕𝑥 . (3.4)

Similarly, for flow in the 𝑦-direction and 𝑧-direction, the surface integrals are

∮
𝐶𝑆

𝜌u𝑢𝑦 d𝐴 ≈ 𝛿3 𝜕(𝜌u𝑢𝑦)
𝜕𝑦 , (3.5)

∮
𝐶𝑆

𝜌u𝑢𝑧 d𝐴 ≈ 𝛿3 𝜕(𝜌u𝑢𝑧)
𝜕𝑧 . (3.6)

Combine Equation 3.4, 3.5, 3.6,

∮
𝐶𝑆

𝜌u(u ⋅ n̂) d𝐴 ≈ 𝛿3
(

𝜕(𝜌u𝑢𝑥)
𝜕𝑥 +

𝜕(𝜌u𝑢𝑦)
𝜕𝑦 + 𝜕(𝜌u𝑢𝑧)

𝜕𝑧 ) . (3.7)

Substituting Equation 3.2, Equation 3.7, and Equation 3.3 into Equation 3.1, neglecting the common term
𝑉 = 𝛿3 from both sides, yielding the expression of the N-S momentum equation

𝜕(𝜌u)
𝜕𝑡 + 𝜕(𝜌u𝑢𝑥)

𝜕𝑥 +
𝜕(𝜌u𝑢𝑦)

𝜕𝑦 + 𝜕(𝜌u𝑢𝑧)
𝜕𝑧 = −∇𝑝 + 𝜇∇2u + 𝜌f. (3.8)

One final step to take is rearranging the unsteady and convective acceleration terms on the L.H.S. of
Equation 3.8. We can assume the fluid is incompressible, allowing us to separate 𝜌 from the partial
derivatives. Therefore,

𝜕(𝜌u)
𝜕𝑡 = 𝜌𝜕u

𝜕𝑡 ,
𝜕(𝜌u𝑢𝑥)

𝜕𝑥 = 𝜌𝜕(u𝑢𝑥)
𝜕𝑥 = 𝜌 (

𝜕𝑢𝑥
𝜕𝑥 u + 𝑢𝑥

𝜕u
𝜕𝑥 ) ,

𝜕(𝜌u𝑢𝑥)
𝜕𝑥 = 𝜌

𝜕(u𝑢𝑦)
𝜕𝑦 = 𝜌 (

𝜕𝑢𝑦
𝜕𝑦 u + 𝑢𝑦

𝜕u
𝜕𝑦 ) ,

𝜕(𝜌u𝑢𝑧)
𝜕𝑧 = 𝜌𝜕(u𝑢𝑧)

𝜕𝑧 = 𝜌 (
𝜕𝑢𝑧
𝜕𝑧 u + 𝑢𝑧

𝜕u
𝜕𝑧 ) .

Substitute the revised expressions into Equation 3.8:

���������

(
𝜕𝑢𝑥
𝜕𝑥 +

𝜕𝑢𝑦
𝜕𝑦 + 𝜕𝑢𝑧

𝜕𝑧 )u + 𝜌 (
𝜕u
𝜕𝑡 + 𝑢𝑥

𝜕u
𝜕𝑥 + 𝑢𝑦

𝜕u
𝜕𝑦 + 𝑢𝑧

𝜕u
𝜕𝑧 ) = −∇𝑝 + 𝜇∇2u + 𝜌f, (3.9)

or in compact form,
𝜌 (

𝜕u
𝜕𝑡 + u ⋅ ∇u) = −∇𝑝 + 𝜇∇2u + 𝜌f. (3.10)

which is the final expression of the N-S equation that we are all familiar with.
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