1.1 Tensors Analysis

Let

- ϕ denotes a scalar (0th-order tensor), *e.g.*, density, viscosity.
- **f** (*f_i* or *f*) denotes a vector (1st-order tensor), *e.g.*, velocity.
- T (*T_{ii}* or <u>T</u>) denotes a matrix (2nd-order tensor), *e.g.*, stress.
- 1. Kronecker delta:

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Properties:

$$\delta_{ij}x_j = x_i, \quad \delta_{ij} = \delta_{ji}$$

2. Alternating tensor (Levi-Civita):

$$\varepsilon_{ijk} = \begin{cases} 1 & \{i, j, k\} = \{1, 2, 3\}, \{2, 3, 1\}, \{3, 1, 2\} \\ -1 & \{i, j, k\} = \{3, 2, 1\}, \{2, 1, 3\}, \{1, 3, 2\} \\ 0 & \text{otherwise} \end{cases}$$

Properties:

$$\varepsilon_{ijk}\varepsilon_{klm} = \delta_{il}\delta_{jm} - \delta_{im}\delta_{kl}$$
$$\varepsilon_{ijk} = -\varepsilon_{ikj}$$

3. Dot product between two 1st-order tensors

 $\mathbf{a} \cdot \mathbf{b} = a_i b_i$

4. Cross product between two 1st-order tensors

 $\mathbf{a} \times \mathbf{b} = \varepsilon_{ijk} a_j b_k$

5. Gradient of a 1st-order tensor

$$(\nabla \mathbf{f})_{ij} = \frac{\partial f_i}{\partial x_j} = f_{i,j}$$

6. Gradient of a 2nd-order tensor

$$\nabla \mathbf{T})_{ijk} = \frac{\partial T_{jk}}{\partial x_i} = T_{jk,i}$$

7. Divergence of a 1st-order tensor

$$\nabla \cdot \mathbf{f}_{i} = \frac{\partial f_{i}}{\partial x_{i}} = f_{i,i}$$

8. Divergence of a 2nd-order tensor

(۲

$$(7 \cdot \mathbf{T})_j = \frac{\partial T_{ij}}{\partial x_i} = T_{ij,i}$$

9. Curl of a 1st-order tensor

$$(\nabla \times \mathbf{f})_i = \varepsilon_{ijk} \frac{\partial}{\partial x_j} f_k = \varepsilon_{ijk} f_{k,j}$$

10. Curl of a 2nd-order tensor

$$(\nabla \times \mathbf{T})_{ij} = \epsilon_{ipq} T_{qj,p}$$

1.2 Constitutive Relationship for Fluids

1.2.1 Stress Tensor

1. In fluid mechanics, Cauchy stress tensor σ_{ij} describes the internal forces exerted on the fluid elements. It is comprised of the **hydrostatic** stress, $-p\delta_{ij}$, and the **deviatoric** stress, d_{ij} ,

$$\sigma_{ij} = \begin{bmatrix} \sigma_{11} & \tau_{12} & \tau_{13} \\ \tau_{21} & \sigma_{22} & \tau_{23} \\ \tau_{31} & \tau_{32} & \sigma_{33} \end{bmatrix} = -p\delta_{ij} + d_{ij}.$$

2. Consider a fluid body at rest ($\mathbf{u} = 0$, absence of any shear forces), the only stress now acting on the fluid body is the **hydrostatic** stress, due to static pressure load from the fluid (Pascal's Law): $\sigma_{hydrostatic} = -p$.

The hydrostatic stresses correspond to the diagonal elements in the Cauchy stress tensor,

$$\sigma_{ij} = \begin{bmatrix} -p & 0 & 0\\ 0 & -p & 0\\ 0 & 0 & -p \end{bmatrix} = -p\delta_{ij} \implies p = \frac{1}{3}\operatorname{tr}(\sigma_{ij}).$$

fluid element τ_{zy} τ_{zy} τ_{xz} τ_{xz} σ_{xx} 3. The **deviatoric** (*a.k.a.* dynamic or viscous) stress raises when a fluid body is in motion. It can be approximated as a linear function of the rate of strain,

$$d_{ij} = \mathbb{C}_{ijkl} \ \frac{\partial}{\partial t} \left(\frac{\partial X}{\partial x} \right).$$

where \mathbb{C}_{ijkl} is a 4th-order tensor (for simplicity, think of it as a linear function coefficient, but it is not actually). Moreover, the rate of strain is equivalent to the velocity gradient,

$$\frac{\partial}{\partial t} \left(\frac{\partial X}{\partial x} \right) = \underbrace{\frac{\partial}{\partial x} \left(\frac{\partial X}{\partial t} \right)}_{\nabla \mathbf{u}} \implies d_{ij} = \mathbb{C}_{ijkl} \nabla \mathbf{u} = \mathbb{C}_{ijkl} \frac{1}{2} \left[\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \left(\frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right) \right].$$

Under *various* assumptions (material isotropy, tensor symmetry, and major symmetry), the number of combinations of \mathbb{C}_{ijkl} can be reduced from 3⁴=81 (4 free indices, each ranges 1-3) to 2. We have

$$\mathbb{C}_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{jk} \delta_{il} + \delta_{ik} \delta_{jl})$$

where λ and μ are the bulk viscosity (less significant, especially for incompressible fluid) and dynamics viscosity (more significant), respectively. To put all the facts together, the deviatoric stress

$$\begin{aligned} d_{ij} &= \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{jk} \delta_{il} + \delta_{ik} \delta_{jl}) \times \left[\frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right] \\ &= \lambda \delta_{ij} \underbrace{\frac{\partial u_k}{\partial x_k}}_{\nabla \cdot \mathbf{u}} + \mu \underbrace{\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)}_{\text{strain rate, 2e}}. \end{aligned}$$

1.2.2 Strain Rate Tensor

Strain rate: $\mathbf{e} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) = \frac{1}{2} (\nabla \mathbf{u} + (\nabla \mathbf{u})^{T})$						
in Cartesian coord. sys.			in c	in cylindrical coord. sys.		
$\left(\frac{\frac{\partial u}{\partial x}}{\frac{1}{2}(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial x})}\right)$	$\frac{1}{2}\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)$ $\frac{\partial v}{\partial y}$	$\frac{1}{2}\left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right)$ $\frac{1}{2}\left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial x}\right)$	$\left(\frac{\frac{\partial u_r}{\partial r}}{\frac{1}{2}\left(r\frac{\partial(u_{\theta}/r)}{\partial r}+\frac{1}{2}\frac{\partial u_r}{\partial r}\right)}\right)$	$\frac{1}{2}\left(r\frac{\partial(u_{\theta}/r)}{\partial r} + \frac{1}{r}\frac{\partial u_{r}}{\partial \theta}\right)$ $\frac{1}{2}\frac{\partial u_{\theta}}{\partial \theta} + \frac{u_{r}}{r}$	$\frac{\frac{1}{2}\left(\frac{\partial u_z}{\partial r} + \frac{\partial u_r}{\partial z}\right)}{\frac{1}{2}\left(\frac{\partial u_\theta}{\partial r} + \frac{1}{2}\frac{\partial u_z}{\partial z}\right)}$	
$\begin{pmatrix} 2 & \partial y & \partial x \\ \frac{1}{2}(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}) \end{pmatrix}$	$\frac{1}{2}(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y})$	$\left(\frac{\partial w}{\partial z}\right)$	$\begin{bmatrix} 2 & \partial r & r & \partial \theta \\ \frac{1}{2} \left(\frac{\partial u_z}{\partial r} + \frac{\partial u_r}{\partial z} \right) \end{bmatrix}$	$\frac{1}{2}\left(\frac{\partial u_{\theta}}{\partial r} + \frac{1}{r}\frac{\partial u_{z}}{\partial \theta}\right)$	$\frac{\partial u_z}{\partial z}$	

1.2.3 Incompressible Fluid Constitutive Relationship

To put up all things together, the Cauchy stress tensor is

$$\begin{aligned} \sigma_{ij} &= -p\sigma_{ij} + a_{ij} \\ &= -p\delta_{ij} + \lambda\delta_{ij}\frac{\partial u_k}{\partial x_k} + \mu \Big(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\Big) \\ &= -p\mathbf{I} + \lambda (\nabla \cdot \mathbf{u})\mathbf{I} + 2\mu\mathbf{e}. \end{aligned}$$

Cauchy's Equation For the incompressible fluid, $\frac{\partial u_k}{\partial x_k} = 0$ (mass conservation). Hence, $\sigma_{ij} = -p\delta_{ij} + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right)$. Cauchy's equation is obtained by equating the total forces acting on a fluid element to its acceleration, based on Newton's 2nd Law: $\mathbf{F} = m\mathbf{a}$.

$$\underbrace{\rho \underbrace{D\mathbf{u}}_{m \times \mathbf{a}}}_{m \times \mathbf{a}} = \underbrace{\nabla \cdot \boldsymbol{\sigma} + \rho \mathbf{f}}_{\mathbf{F}_{\text{internal}} + \mathbf{F}_{\text{external}}},$$

where $\frac{D\mathbf{u}}{Dt} = \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}$ is the material derivative. By expanding $\frac{D\mathbf{u}}{Dt}$ and $\nabla \cdot \boldsymbol{\sigma}$, we will obtain the celebrated Navier-Stokes equation, which depicts the conservation of linear momentum.

Drafted by B. Li, October 19, 2024