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1.1 Tensors Analysis
Let

• 𝜙 denotes a scalar (0th-order tensor), e.g., density, viscosity.

• f (𝑓𝑖 or 𝑓 ) denotes a vector (1st-order tensor), e.g., velocity.

• T (𝑇𝑖𝑗 or 𝑇 ) denotes a matrix (2nd-order tensor), e.g., stress.

1. Kronecker delta:

𝛿𝑖𝑗 =
{

1 if 𝑖 = 𝑗
0 if 𝑖 ≠ 𝑗

Properties:
𝛿𝑖𝑗𝑥𝑗 = 𝑥𝑖, 𝛿𝑖𝑗 = 𝛿𝑗𝑖

2. Alternating tensor (Levi-Civita):

𝜀𝑖𝑗𝑘 =
⎧⎪
⎨
⎪⎩

1 {𝑖, 𝑗, 𝑘} = {1, 2, 3}, {2, 3, 1}, {3, 1, 2}
−1 {𝑖, 𝑗, 𝑘} = {3, 2, 1}, {2, 1, 3}, {1, 3, 2}
0 otherwise

Properties:

𝜀𝑖𝑗𝑘𝜀𝑘𝑙𝑚 = 𝛿𝑖𝑙𝛿𝑗𝑚 − 𝛿𝑖𝑚𝛿𝑘𝑙

𝜀𝑖𝑗𝑘 = −𝜀𝑖𝑘𝑗

3. Dot product between two 1st-order tensors

a ⋅ b = 𝑎𝑖 𝑏𝑖

4. Cross product between two 1st-order tensors

a × b = 𝜀𝑖𝑗𝑘 𝑎𝑗 𝑏𝑘

5. Gradient of a 1st-order tensor

(∇f)𝑖𝑗 = 𝜕𝑓𝑖
𝜕𝑥𝑗

= 𝑓𝑖,𝑗

6. Gradient of a 2nd-order tensor

(∇T)𝑖𝑗𝑘 =
𝜕𝑇𝑗𝑘
𝜕𝑥𝑖

= 𝑇𝑗𝑘,𝑖

7. Divergence of a 1st-order tensor

(∇ ⋅ f)𝑖 = 𝜕𝑓𝑖
𝜕𝑥𝑖

= 𝑓𝑖,𝑖

8. Divergence of a 2nd-order tensor

(∇ ⋅ T)𝑗 =
𝜕𝑇𝑖𝑗
𝜕𝑥𝑖

= 𝑇𝑖𝑗,𝑖

9. Curl of a 1st-order tensor

(∇ × f)𝑖 = 𝜀𝑖𝑗𝑘
𝜕

𝜕𝑥𝑗
𝑓𝑘 = 𝜀𝑖𝑗𝑘 𝑓𝑘,𝑗

10. Curl of a 2nd-order tensor

(∇ × T)𝑖𝑗 = 𝜀𝑖𝑝𝑞 𝑇𝑞𝑗,𝑝

1.2 Constitutive Relationship for Fluids

1.2.1 Stress Tensor
1. In fluid mechanics, Cauchy stress tensor 𝜎𝑖𝑗 describes the internal forces

exerted on the fluid elements. It is comprised of the hydrostatic stress,
−𝑝𝛿𝑖𝑗 , and the deviatoric stress, 𝑑𝑖𝑗 ,

𝜎𝑖𝑗 =
⎡⎢⎢⎣

𝜎11 𝜏12 𝜏13
𝜏21 𝜎22 𝜏23
𝜏31 𝜏32 𝜎33

⎤⎥⎥⎦
= −𝑝𝛿𝑖𝑗 + 𝑑𝑖𝑗 .

2. Consider a fluid body at rest (u = 0, absence of any shear forces), the only
stress now acting on the fluid body is the hydrostatic stress, due to static
pressure load from the fluid (Pascal’s Law): 𝜎hydrostatic = −𝑝.

The hydrostatic stresses correspond to the diagonal elements in the Cauchy
stress tensor,

𝜎𝑖𝑗 =
⎡⎢⎢⎣

−𝑝 0 0
0 −𝑝 0
0 0 −𝑝

⎤⎥⎥⎦
= −𝑝𝛿𝑖𝑗 ⟹ 𝑝 = 1

3 tr(𝜎𝑖𝑗).
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3. The deviatoric (a.k.a. dynamic or viscous) stress raises when a fluid body is in motion. It can be approximated
as a linear function of the rate of strain,

𝑑𝑖𝑗 = ℂ𝑖𝑗𝑘𝑙
𝜕
𝜕𝑡(

𝜕𝑋
𝜕𝑥 ).

where ℂ𝑖𝑗𝑘𝑙 is a 4th-order tensor (for simplicity, think of it as a linear function coefficient, but it is not actually).
Moreover, the rate of strain is equivalent to the velocity gradient,

𝜕
𝜕𝑡(

𝜕𝑋
𝜕𝑥 ) = 𝜕

𝜕𝑥(
𝜕𝑋
𝜕𝑡 )⏟⏟⏟⏟⏟

∇u

⟹ 𝑑𝑖𝑗 = ℂ𝑖𝑗𝑘𝑙∇u = ℂ𝑖𝑗𝑘𝑙
1
2[(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖 ) +

�������*
0, neglect rotation

(
𝜕𝑢𝑖
𝜕𝑥𝑗

−
𝜕𝑢𝑗
𝜕𝑥𝑖 )].

Under various assumptions (material isotropy, tensor symmetry, and major symmetry), the number of combina-
tions of ℂ𝑖𝑗𝑘𝑙 can be reduced from 34=81 (4 free indices, each ranges 1-3) to 2. We have

ℂ𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑗𝑘𝛿𝑖𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙),

where 𝜆 and 𝜇 are the bulk viscosity (less significant, especially for incompressible fluid) and dynamics viscosity
(more significant), respectively. To put all the facts together, the deviatoric stress

𝑑𝑖𝑗 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑗𝑘𝛿𝑖𝑙 + 𝛿𝑖𝑘𝛿𝑗𝑙) × [
1
2(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖 )]

= 𝜆𝛿𝑖𝑗
𝜕𝑢𝑘
𝜕𝑥𝑘⏟
∇⋅u

+𝜇 (
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖 )⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

strain rate, 2e

.

1.2.2 Strain Rate Tensor

Strain rate: e = 1
2 (

𝜕𝑢𝑖
𝜕𝑥𝑗

+ 𝜕𝑢𝑗
𝜕𝑥𝑖 ) = 1

2 (∇u + (∇u)⊤)

in Cartesian coord. sys. in cylindrical coord. sys.

⎛
⎜
⎜
⎜
⎜
⎝

𝜕𝑢
𝜕𝑥

1
2 ( 𝜕𝑢

𝜕𝑦 + 𝜕𝑣
𝜕𝑥 ) 1

2 ( 𝜕𝑢
𝜕𝑧 + 𝜕𝑤

𝜕𝑥 )
1
2 ( 𝜕𝑢

𝜕𝑦 + 𝜕𝑣
𝜕𝑥 ) 𝜕𝑣

𝜕𝑦
1
2 ( 𝜕𝑣

𝜕𝑧 + 𝜕𝑤
𝜕𝑦 )

1
2 ( 𝜕𝑢

𝜕𝑧 + 𝜕𝑤
𝜕𝑥 ) 1

2 ( 𝜕𝑣
𝜕𝑧 + 𝜕𝑤

𝜕𝑦 ) 𝜕𝑤
𝜕𝑧

⎞
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

𝜕𝑢𝑟
𝜕𝑟

1
2 (𝑟 𝜕(𝑢𝜃 /𝑟)

𝜕𝑟 + 1
𝑟

𝜕𝑢𝑟
𝜕𝜃 ) 1

2 ( 𝜕𝑢𝑧
𝜕𝑟 + 𝜕𝑢𝑟

𝜕𝑧 )
1
2 (𝑟 𝜕(𝑢𝜃 /𝑟)

𝜕𝑟 + 1
𝑟

𝜕𝑢𝑟
𝜕𝜃 ) 1

𝑟
𝜕𝑢𝜃
𝜕𝜃 + 𝑢𝑟

𝑟
1
2 ( 𝜕𝑢𝜃

𝜕𝑟 + 1
𝑟

𝜕𝑢𝑧
𝜕𝜃 )

1
2 ( 𝜕𝑢𝑧

𝜕𝑟 + 𝜕𝑢𝑟
𝜕𝑧 ) 1

2 ( 𝜕𝑢𝜃
𝜕𝑟 + 1

𝑟
𝜕𝑢𝑧
𝜕𝜃 ) 𝜕𝑢𝑧

𝜕𝑧

⎞
⎟
⎟
⎟
⎟
⎠

1.2.3 Incompressible Fluid Constitutive Relationship
To put up all things together, the Cauchy stress tensor is

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝑑𝑖𝑗

= −𝑝𝛿𝑖𝑗 + 𝜆𝛿𝑖𝑗
𝜕𝑢𝑘
𝜕𝑥𝑘

+ 𝜇(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖 )

= −𝑝I + 𝜆(∇ ⋅ u)I + 2𝜇e.

Cauchy’s Equation For the incompressible fluid,
𝜕𝑢𝑘
𝜕𝑥𝑘

= 0 (mass conservation). Hence, 𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇(
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖 ).

Cauchy’s equation is obtained by equating the total forces acting on a fluid element to its acceleration, based on
Newton’s 2nd Law: F = 𝑚a.

𝜌𝐷u
𝐷𝑡⏟

𝑚×a

= ∇ ⋅ 𝝈 + 𝜌f⏟⏟⏟⏟⏟
Finternal + Fexternal

,

where 𝐷u
𝐷𝑡 = 𝜕u

𝜕𝑡 + u ⋅ ∇u is the material derivative. By expanding 𝐷u
𝐷𝑡 and ∇ ⋅ 𝝈, we will obtain the celebrated

Navier-Stokes equation, which depicts the conservation of linear momentum.
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