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1.1 Tensors Analysis

Let
« ¢ denotes a scalar (0"-order tensor), e.g., density, viscosity.

« f(f; or f) denotes a vector (1%'-order tensor), e.g., velocity.

* T (T;; or T) denotes a matrix (2"%-order tensor), e.g., stress.

1. Kronecker delta: 5. Gradient of a 15-order tensor
Lo of,;
sy=4 0 (V0 = 5, =
J 0 ifi#j J
Properties: 6. Gradient of a 2"%-order tensor
bijX; =X 8 =0y, T}y
] o (VT)ijk = ox. = Tjk,i
2. Alternating tensor (Levi-Civita): i
1 {i,j, k} = {1,2,3},{2,3,1},{3,1,2} 7. Divergence of a 15'-order tensor
g =—1 {i.j,k} = {3,2,1},{2,1,3},{1,3,2} of,
0  otherwise Vb= == fi;
1
Properties: 8. Divergence of a 2"-order tensor

€iikEkim = 0i10jm — OimOky aT;;

V= g = T
Eijk = —Eikj
ot 9. Curl of a 1%*-order tensor
3. Dot product between two 1>-order tensors

0
(VXD =€ =— fi = €iji Juj

a-b= a; bi dxj
4. Cross product between two 15-order tensors 10. Curl of a 2"-order tensor
axXb=g¢;a; by (VXD)ij = €ipg Tyjip
1.2 Constitutive Relationship for Fluids
1.2.1 Stress Tensor
1. In fluid mechanics, Cauchy stress tensor o¢;; describes the internal forces
exerted on the fluid elements. It is comprised of the hydrostatic stress,
—pd;;, and the deviatoric stress, d;;, fluid element
Gzz
11 Tiz T3
6;;=|7T2 02 T3 |=-—p;+d.
31 T3 033 T, Ta
T
2. Consider a fluid body at rest (u = 0, absence of any shear forces), the only Ty ¥
stress now acting on the fluid body is the hydrostatic stress, due to static )‘_ c
pressure load from the fluid (Pascal’'s Law): o,y drostatic = —P- *
4 . T |Tw
The hydrostatic stresses correspond to the diagonal elements in the Cauchy >
stress tensor, X

-p 0 O | y
o = 0 —-p O0|= —péij = p= 3 tr(aij).
0O 0 —p
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3. The deviatoric (a.k.a. dynamic or viscous) stress raises when a fluid body is in motion. It can be approximated
as a linear function of the rate of strain,
Jo—c. O <ax>

ij ijkl 5 E
where C,;, is a 4™ _order tensor (for simplicity, think of it as a linear function coefficient, but it is not actually).

Moreover, the rate of strain is equivalent to the velocity gradient,

0, neglect rotation

00X 0 [0X 1[/0u; Ou; ou; 9
3 (50) = 3:(%) ) A PR " ox,
Vu

Under various assumptions (material isotropy, tensor symmetry, and major symmetry), the number of combina-
tions of C,;,, can be reduced from 3%=81 (4 free indices, each ranges 1-3) to 2. We have

Cijkl = A5ij5kl + ﬂ(éjk5il + éikéﬂ)’

where A and p are the bulk viscosity (less significant, especially for incompressible fluid) and dynamics viscosity
(more significant), respectively. To put all the facts together, the deviatoric stress

. = 16,8, + u(8,.6, +6,6,) x| % ou; %
= 35,50+ o + o <2 1 2]
g " JE e 2\ox; = ox;
oJu ou;, Ou;
= 18, =% ;4(—’+—’).
(ixﬂk ox;  Ox;
V-u
strain rate, 2e

1.2.2 Strain Rate Tensor

Strain rate: e = %(di + %) = %(Vu +(Vu)h)

ox; ox;
in Cartesian coord. sys. \ in cylindrical coord. sys.
T e T T
WG n o a@Er )| | [T R Gl
i rgomGt O )|\ ik it %

1.2.3 Incompressible Fluid Constitutive Relationship
To put up all things together, the Cauchy stress tensor is

O'ij=—p5,»j+dij
— _p,, + a5, 2 (a”"+au’>
= TP ij()xk H ox;  Ox;

= —pl+ A(V - wI + 2ue.

ou; auj )

. . ., Ou .
Cauchy’s Equation For the incompressible fluid, a—k = 0 (mass conservation). Hence, o;; = —pd;; +y<£ ™
Jj i

Xk
Cauchy’s equation is obtained by equating the total forces acting on a fluid element to its acceleration, based on

Newton’s 2" Law: F = ma.
Du

p— = V.o+pf |
Dt N~——
mxa Finternal + Fexternal
where % = (?)_1; + u - Vu is the material derivative. By expanding %‘t‘ and V - o, we will obtain the celebrated

Navier-Stokes equation, which depicts the conservation of linear momentum.
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