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3.1 Fluid Viscosity

For the Newtonian fluid, the dynamic viscosity u [Pa - s] is a fixed constant; whereas for the non-Newtonian fluid, the
viscosity varies with the shear stress = [Pa] and shear rate y [1/s].
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FIG. 1: Left: the concept of shear strain y in a simple shear flow; Right: the rheological behaviour of viscous fluids
can be classified by the shear stress - shear rate (y = dy/dt) relations.

« Shear thickening: u increases with shear rate - e.g., ketchup;

» Shear thinning: u decreases with shear rate - e.g., cornstarch paste;

* Bingham plastic: a yield stress z, impedes the fluid flow until z > 7.

Although the blood is modelled as a Newtonian fluid, it is shear thinning with yield (a.k.a. Bingham pseudoplastic).
The non-Newtonian behaviours of blood is due to the cell suspension (rather than the plasma), hence, the viscosity
is Hematocrit-dependent.

3.2 Flow in a Rectangular Duct
Consider the flow in a rectangular duct (length L, width w, height #) in the Cartesian coordinate system (Figure 2).
Assumptions

* Fluid is homogeneous, incompressible and Newtonian with viscosity y and density p;

» Flow has reached the steady state: du/dt = 0;

Flow is fully developed along the x-direction: du/dx = 0;

* Zero velocity along the y- and z-directions: v =0, w = 0;

Negligible body force: f =0.
Boundary Conditions Symmetrical flow profile at y = 0 and z = 0; Non-slip condition atthe wall y = +h/2, z = +w/2.
Aim Analytically solve for the flow velocity in the x-direction.

Solution The x-momentum equation is reduced to
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Using separation of variables!, the analytical solution of u is
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for the full derivation, see the Supplementary slides posted on Blackboard
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FIG. 2: The schematic for the flow in a rectangular duct.

Integrating u over the area, the flux Q can be expressed as
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Finally, by QO = Ap/R, the flow resistance is

A
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Y wh3[1 —0.6274(%)].

3.3 Womersley Flow

Motivation To approximate the pulsatility nature of the flow in the cardiovascular system.

Assumptions
* Fluid is homogeneous, incompressible and Newtonian with viscosity y and density p;
» Flow in a long straight tube, with a perfect circular cross-section at radius a;

» Axisymmetric along the #-axis: 0/06 = 0;

The flow is fully developed along the z-axis: du/az = 0;

* No swirls: u, = 0;

No velocity along the radial direction: u, = 0;

Negligible body force: f= 0.
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FIG. 3: The schematic of the Womersley flow in a pipe.

Boundary Conditions No-slip condition on the wall, parabolic condition as Poiseuille flow.
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Solution Procedure

Step 1 The z-momentum equation
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Assume the pressure gradient is sinusoidal: dp/doz = Toe’w’, and following the sinusoidal z-velocity: u, =
U(r)e™":
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Step 2 The full solution of U(r) involves a complementary function, which is formulated with the Bessel function of the
1 kind at 0™ order, J; also the particular integral, U,; = —G/2iwp:
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and «a denotes the non-dimensional Wormersley number: « = a, /—p = a\/é
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Step 3 To recover u, from U (r):
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Ostensibly, this solution is defined in the complex domain; but for simplicity, we only consider the real part to
interpret its physical meaning.

Extended Properties

1. Wall shear stress:

auz P J1 (l-3/2a) ap ) to (_ l)k s 2k+n
T2 = W ”m{ a3y, < Jo( ) ) 3z } with - J,(s) kz::f) Kk +m)! <2)

2. Volume flow rate: 3
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The Wormersley Number The Wormersley number « is the ratio between unsteady inertia force and viscous force.

* a < 1: Quasi-steady, the velocity profile is basically scaled Poiseuille flow, mainly observed in the microvascu-
latures (e.g., capillaries, venules);

* a > 1: Oscillatory, the velocity profile is balanced between viscous forces at the wall and inertial forces in the
centre. Common in large arteries (e.g., ascending aorta, carotid artery).
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FIG. 4: Womersley flow profiles. (a) Low « (viscous dominates), (b) intermediate «, (c) high « (inertia dominates).
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