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5.1 Dimensional Analysis

Buckingham-IT1 Theorem The Buckingham-II theorem states that if an equation involving k variables is dimension-
ally homogeneous (i.e., L.H.S. units = R.H.S. units),

up = f(uy, uz, ..., uy),

it can be reduced to a relationship among (k—r) independent dimensionless products, where r is the minimum number
of reference dimensions required to describe the variables,

Hl = ¢(H2, H3, "'Hk—r)'

Objective Perform the dimensional analysis of the scenario where the pressure drops per unit length along
a smooth pipe.

Step 1 List all relevant variables in the objective equation to be non-dimensionalised. Here,

Apl = f(D’ P> H, V)’

where the pressure drop Ap, is a function of the pipe diameter D, the density p, the (dynamic) viscosity
u, and velocity V.

Step 2 List the dimensions of the variables. Let [M] denotes the dimension of mass, [L] denotes the dimension
of length, [T] denotes the dimension of time, (refer to Table 2)

Apy=[ML'T™?,  u=[ML'T™"]
D=[L], VvV =[LT™"
p=[ML™]

There are k = 5 variables and r = 3 reference dimensions, we conclude there will be kK — r = 2 dimen-
sionless groups.

Step 3 Suppose the first group involves Ap,, p, V and D. Let a, b, ¢, d denote 4 constants to be determined,

DipPveap] = |[LIYIML7PLT T (MLT'T ) = (L(F[T) )

Balance of [M], [L], [T] would give the simultaneous equations

(mass) b+d=0,
(length) a-3b+c—-d=0,
(time) —c—2d=0.

(3 equations with 4 unknowns = the equation system is underdetermined, we will not be able to explicitly
solve the numerical values of 4 parameters, but at least we will know the relations between q, b, ¢, d.)

resulting in the following relations: a =0, b = —d, ¢ = —2d. Hence, withd = -1, — a=0,b=1, ¢ =2,

2 2
0 1y2a 1 — [PV . . .4
D'p' V-Ap, " = <_Ap,> is dimensionless, = [II,; = <—> L

(Although we supposed that D might get involved in the first IT group, but by a = 0, I, is invariant of D.)

u

= —— |, which is 1/Re.
pDV

Step 4 Similarly, the second term involves g, follow the same rule, this yields |II,

Step 5 Hence, we can express the result of the dimensional analysis as

p_V2 =il
Ap pDV )
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Variables: Acceleration of gravity, g; Bulk modulus, E,; Characteristic length, L; Density, p;
Frequency of oscillating flow, w; Pressure, p; Speed of sound, ¢; Surface tension, o, ; Velocity, V.

Dimensionless

groups Name Interpretation Types of Applications
inertia force Generally of importance in all
PV Lin Reynolds number, Re viscous force types of fluid dynamics problems
inertia force i
Viz/gL Froude number, Fr Sravitational force Flow with a free surface
Problems in which pressure, or
plpV Euler number, Eu pressure force pressure differences, are of
inertia force interest
Vie Mach number, Ma inertia force Flows in wh|ch_ the .compressmlllty
compressibility force of the fluid is important
wL/V Strouhal number, St __inertia(local) force Unsteady flow with a char_acterlstlc
inertia (convective) force frequency of oscillation
VLo, Weber number, We inertia force Problems in whlch surface tension
surface tension force IS Important
Table 1: Common variables and dimensionless groups in fluid mechanics.
Parameter Symbol Dimensions \ Parameter Symbol Dimensions
Acceleration a [L'T2 Surface tension o, [M'T2]
Angle 0,$,etc. 1 (none) Velocity 14 (L'T™1
Density p) (ML) Viscosity U (ML~
Force F [M'L'T~?] | Volume flowrate QO (L3771
Frequency  f (T~ Pressure p (M'L7'T2

Table 2: Table of parameters with symbols and primary dimensions in two columns. [M]: mass, [T]: time; [L]: length.

5.2 Non-Dimensional Navier-Stokes Equation

* Define the non-dimensional variables

where L, U are the characteristic length and velocity, respectively.
« The dimensionless Navier-Stokes momentum equation is

ou*
ot*

. . P, .
Re( + (u* - V*)u*) = —M—;}V*p* + V*2u¥,
3

U . . . . .
where P, = bl max(1, Re), i.e., the viscous scale (Re < 1) or dynamic scale (Re > 1). This formulation ensures
the pressure term has the same order of magnitude as other terms, since there is no natural scaling for pressure.

« The dimensionless continuity equation is
V¥.u* =0.

Small Re flow (Re < 1) P, = uU/L and the L.H.S. eliminated,

0
()ll)k Y %\ g1k * sk %2k * ok *2 % 2
Rel — 'V)u>=—Vp + V*u = Vp'=V*un" < uVu=Vp

which is known as the Stokes equation that can be solved analytically due to its linearity.
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Governing Equation of Stokes Flow

Define the vorticity as @ = V X u
uVlu=-puVxe dueto Vxeo=Vx(Vxu)=V-u-Vu

Further, take the curl of uV?u = Vp:

VxVp =VxuVu) = 0 = —uVx(VXw)

“curl of grad — _ . N v
is zero” 0= —ul \V(V D)=V (D, ]
by: VX(VXA)=V(V-A)-VZA
0 = —u[V(V -V xu)-Vael.

“div of curl
is zero”

The above derivation results in V2@ = 0, which is the governing equation of the Stokes flow.
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FIG. 1: Flow passing around a cylinder at different Reynolds numbers. The top left scenario depicts the Stokes flow
when Re « 1 -'no flow separation.

Large Re flow (Re> 1) P, = pU? and the viscus term eliminated (hence, the fluid is approximated nearly inviscid),

sk
aaltl* + U VUt = -V = (23_1; +(u-V)u=-Vp,

which is known as the Euler equation. (see Supplementary 5 for boundary layer analysis.)
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FIG. 2: The velocity profile of flow between two parallel plates when the fluid is (a) affected by viscosity, (b) inviscid.

Drafted by B. Li, September 28, 2024



	Dimensional Analysis
	Non-Dimensional Navier-Stokes Equation

