5.1 Dimensional Analysis

Buckingham- Π **Theorem** The Buckingham- Π theorem states that if an equation involving *k* variables is dimensionally homogeneous (*i.e.*, L.H.S. units = R.H.S. units),

$$u_1 = f(u_2, u_3, ..., u_k),$$

it can be reduced to a relationship among (k-r) independent dimensionless products, where *r* is the minimum number of reference dimensions required to describe the variables,

$$\Pi_1 = \phi(\Pi_2, \Pi_3, ... \Pi_{k-r}).$$

Example **Objective** Perform the dimensional analysis of the scenario where the pressure drops per unit length along a smooth pipe. Step 1 List all relevant variables in the objective equation to be non-dimensionalised. Here, $\Delta p_l = f(D, \rho, \mu, V),$ where the pressure drop Δp_l is a function of the pipe diameter *D*, the density ρ , the (dynamic) viscosity μ , and velocity V. Step 2 List the dimensions of the variables. Let [M] denotes the dimension of mass, [L] denotes the dimension of length, [T] denotes the dimension of time, (refer to Table 2)
$$\begin{split} \Delta p_l &\doteq [M L^{-1} T^{-2}], \qquad \mu \doteq [M L^{-1} T^{-1}] \\ D &\doteq [L], \qquad \qquad V \doteq [L T^{-1}] \\ \rho &\doteq [M L^{-3}] \end{split}$$
There are k = 5 variables and r = 3 reference dimensions, we conclude there will be k - r = 2 dimensionless groups. **Step 3** Suppose the first group involves Δp_l , ρ , V and D. Let **a**, **b**, **c**, **d** denote 4 constants to be determined, $D^{a} \rho^{b} V^{c} \Delta p_{l}^{d} \implies [L]^{a} [ML^{-3}]^{b} [LT^{-1}]^{c} [ML^{-1}T^{-2}]^{d} \doteq [L]^{0} [F]^{0} [T]^{0}$ Balance of [M], [L], [T] would give the simultaneous equations b + d = 0.(mass) (length) $\boldsymbol{a} - 3\boldsymbol{b} + \boldsymbol{c} - \boldsymbol{d} = 0,$ (time) -c - 2d = 0.(3 equations with 4 unknowns \Rightarrow the equation system is underdetermined, we will not be able to explicitly solve the numerical values of 4 parameters, but at least we will know the relations between a, b, c, d.) resulting in the following relations: a = 0, b = -d, c = -2d. Hence, with d = -1, $\rightarrow a = 0$, b = 1, c = 2, $D^0 \rho^1 V^2 \Delta p_l^{-1} \equiv \left(\frac{\rho V^2}{\Delta p_l}\right)$ is dimensionless, $\implies \Pi_1 = \left(\frac{\rho V^2}{\Delta p_l}\right)$ (Although we supposed that D might get involved in the first Π group, but by a = 0, Π_1 is invariant of D.) **Step 4** Similarly, the second term involves μ , follow the same rule, this yields $\Pi_2 = \frac{\mu}{\rho DV}$, which is 1/Re. Step 5 Hence, we can express the result of the dimensional analysis as $\frac{\rho V^2}{\Delta p_l} = \phi \left(\frac{\mu}{\rho DV}\right).$

Variables: Acceleration of gravity, g; Bulk modulus, E_v ; Characteristic length, L; Density, ρ ; Frequency of oscillating flow, ω ; Pressure, p; Speed of sound, c; Surface tension, σ_s ; Velocity, V.

Dimensionless groups	Name	Interpretation	Types of Applications
ρVL/μ	Reynolds number, ${\rm Re}$	inertia force viscous force	Generally of importance in all types of fluid dynamics problems
V/\sqrt{gL}	Froude number, ${\rm Fr}$	inertia force gravitational force	Flow with a free surface
p/ $ ho V$	Euler number, Eu	pressure force inertia force	Problems in which pressure, or pressure differences, are of interest
V/c	Mach number, Ma	inertia force compressibility force	Flows in which the compressibility of the fluid is important
ωL/V	Strouhal number, St	inertia(local) force inertia (convective) force	Unsteady flow with a characteristic frequency of oscillation
$ ho V^2 L/\sigma_s$	Weber number, We	inertia force surface tension force	Problems in which surface tension is important

Table 1: Common variables and dimensionless groups in fluid mechanics.

Parameter	Symbol	Dimensions	Parameter	Symbol	Dimensions
Acceleration	а	$[L^1T^{-2}]$	Surface tension	σ_s	$[M^1T^{-2}]$
Angle	$\theta, \phi,$ etc.	1 (none)	Velocity	V	$[L^1T^{-1}]$
Density	ρ	$[M^1L^{-3}]$	Viscosity	μ	$[M^1L^{-1}T^{-1}]$
Force	F	$[M^1 L^1 T^{-2}]$	Volume flow rate	Q	$[L^3T^{-1}]$
Frequency	f	$[T^{-1}]$	Pressure	р	$[M^1L^{-1}T^{-2}]$

Table 2: Table of parameters with symbols and primary dimensions in two columns. [*M*]: mass, [*T*]: time; [*L*]: length.

5.2 Non-Dimensional Navier-Stokes Equation

· Define the non-dimensional variables

$$\mathbf{x}^* = \frac{\mathbf{x}}{L}, \qquad \mathbf{u}^* = \frac{\mathbf{u}}{U}, \qquad t^* = \frac{t}{L/U}, \qquad p^* = \frac{p}{P_0},$$

where *L*, *U* are the characteristic length and velocity, respectively.

· The dimensionless Navier-Stokes momentum equation is

$$\operatorname{Re}\left(\frac{\partial \mathbf{u}^{*}}{\partial t^{*}} + (\mathbf{u}^{*} \cdot \nabla^{*})\mathbf{u}^{*}\right) = -\frac{P_{0}}{\frac{\mu U}{L}}\nabla^{*}p^{*} + \nabla^{*2}\mathbf{u}^{*},$$

where $P_0 = \frac{\mu U}{L} \max(1, \text{Re})$, *i.e.*, the viscous scale (Re < 1) or dynamic scale (Re > 1). This formulation ensures the pressure term has the same order of magnitude as other terms, since there is no natural scaling for pressure.

• The dimensionless continuity equation is

$$\nabla^* \cdot \mathbf{u}^* = 0.$$

Small Re flow (Re \ll 1) $P_0 = \mu U/L$ and the L.H.S. eliminated,

$$\operatorname{Re}\left(\frac{\partial \mathbf{u}^{*}}{\partial t^{*}} + (\mathbf{u}^{*} \cdot \nabla^{*})\mathbf{u}^{*}\right) = -\nabla^{*}p^{*} + \nabla^{*2}\mathbf{u}^{*} \implies \nabla^{*}p^{*} = \nabla^{*2}\mathbf{u}^{*} \iff \mu\nabla^{2}\mathbf{u} = \nabla p$$

which is known as the **Stokes equation** that can be solved analytically due to its linearity.

Governing Equation of Stokes Flow

Define the vorticity as $\boldsymbol{\omega} = \nabla \times \mathbf{u}$

$$u\nabla^2 \mathbf{u} = -u\nabla \times \boldsymbol{\omega}$$
 due to $\nabla \times \boldsymbol{\omega} = \nabla \times (\nabla \times \mathbf{u}) = \nabla \cdot \mathbf{u} - \nabla^2 \mathbf{u}$.

Further, take the curl of $\mu \nabla^2 \mathbf{u} = \nabla p$:

The above derivation results in $\nabla^2 \omega = 0$, which is the governing equation of the Stokes flow.

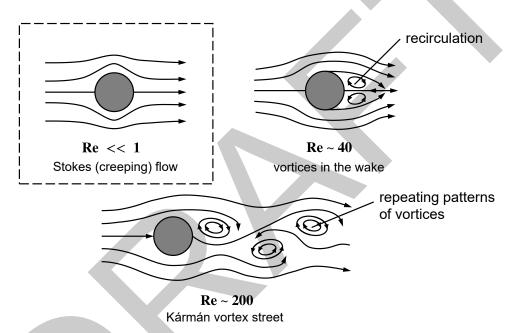


FIG. 1: Flow passing around a cylinder at different Reynolds numbers. The top left scenario depicts the Stokes flow when $\text{Re} \ll 1$ - no flow separation.

Large Re flow (Re \gg 1) $P_0 = \rho U^2$ and the viscus term eliminated (hence, the fluid is approximated nearly inviscid),

$$\frac{\partial \mathbf{u}^*}{\partial t^*} + (\mathbf{u}^* \cdot \nabla^*) \mathbf{u}^* = -\nabla^* p^* \quad \Longrightarrow \quad \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p,$$

which is known as the Euler equation. (see Supplementary 5 for boundary layer analysis.)

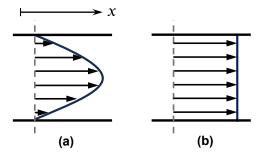


FIG. 2: The velocity profile of flow between two parallel plates when the fluid is (a) affected by viscosity, (b) inviscid.