7.1 Lumped Parameter Modelling

Resistance, Compliance, and Intertance

- **Resistance** R: analogous to the electrical resistance which models the dissipation of energy. The mass flow rate Q is analogous to the electrical current (usually denoted by I), and the pressure p is analogous to the electrical voltage (usually denoted by V).
- **Compliance** C: this models the expansion of cardiovascular chambers under pressure, allowing it to store more fluid.
- **Inductor** L: this models the inertance of the fluid. When the fluid momentum is substantial, as the pressure on forward-flowing fluid reverses, the fluid will not suddenly reverse its direction, but decelerate over a transient.

Solving a Lumped Parameter Network Consider the example lumped parameter network,

... which yields a linear system with 4 unknowns $(p_2, Q_1,$ Q_2 , Q_3) and 4 simultaneous equations:

$$
\begin{cases} p_2 - p_1 = R_1 Q_1, \\ p_3 - p_2 = R_2 Q_2, \\ Q_3 = C(p_2^{(t)} - p_2^{(t-1)})/\Delta t, \\ Q_1 = Q_2 + Q_3. \end{cases}
$$

Note that $p_2^{(t-1)}$ $\mu_2^{(t-1)}$ denotes the pressure p_2 at the previous time step $t-1$; $(p_2^{(t)}-p_2^{(t-1)})$ $\binom{(l-1)}{2}$ / Δt is an expression of the time **derivative in the backward Euler fashion.** (*cf.* electrical capacitor $I = C \cdot dV/dt$).

The above linear system can be arranged into a matrix system, $Ax = b$,

and can be easily solved by inversion of the coefficient matrix: $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$.

7.2 Windkessel Models

FIG. 1: Left: the mechanical equivalence of three Windkessel models; Right: Input impedances of the three Windkessels compared with the measured input impedance. (Westerhof *et. al*)

2-element Windkessel Model

Governing Equation:

$$
\frac{\mathrm{d}p(t)}{\mathrm{d}t} + \frac{p(t)}{RC} = \frac{Q_{\text{in}}}{C}
$$

where C denotes the vessel compliance (elasticity), R denotes the peripheral (distal) resistance.

3-element Windkessel Model

Derivation

Apply Kirchhoff's Current Law at node p_{distal} : $Q_{\text{in}} = Q_R + Q_C$. Moreover, since $p(t) - p_{\text{distal}} = Z_c Q_{\text{in}} \Rightarrow p_{\text{distal}} =$ $p(t) - Z_c Q_{\text{in}}.$

• Current passes through the resistor *:*

$$
Q_R = \frac{p_{\text{distal}}}{R} = \frac{p(t) - Z_c Q_{\text{in}}}{R} = \frac{p(t)}{R} - \frac{Z_c Q_{\text{in}}}{R}.
$$

• Current passes through the capacitor C :

$$
Q_C = C \frac{\partial p_{\text{distal}}}{\partial t} = C \frac{\partial [p(t) - Z_c Q_{\text{in}}]}{\partial t} = C \frac{\partial p(t)}{\partial t} - C Z_c \frac{\partial Q_{\text{in}}}{\partial t}.
$$

Hence, the total flow Q_{in} is

$$
Q_{\text{in}} = Q_R + Q_C
$$

= $\frac{p(t)}{R} - \frac{Z_c Q_{\text{in}}}{R} + C \frac{\partial p(t)}{\partial t} - CZ_c \frac{\partial Q_{\text{in}}}{\partial t}$

rearrange, we get

$$
C\frac{\partial p(t)}{\partial t} + \frac{p(t)}{R} = \left(1 + \frac{Z_c}{R}\right)Q_{\text{in}} + CZ_c\frac{\partial Q_{\text{in}}}{\partial t}.
$$

Divide both sides of the equation above by C , we will get the final governing equation as presented.

4-element Windkessel Model

Governing Equation:

,

$$
\frac{\partial p}{\partial t} + \frac{p(t)}{RC} = \frac{Q}{C} \left(1 + \frac{Z_{\text{total}}}{R} \right) + Z_{\text{total}} \frac{\partial Q}{\partial t}
$$

where $Z_{\text{total}} = \frac{j\omega L Z_c}{i\omega L + Z}$ $\frac{J\omega \Delta L_c}{j\omega L + Z_c}$ is the total impedance of the parallel network - the characteristic impedance, Z_c and the inductor, L .

Derivation

Apply Kirchhoff's Current Law at node p_{distal} : $Q_{\text{in}} = Q_R + Q_C$. However, we need to express p_{distal} in terms of $p(t)$, hence need to solve the total impedance of the Z_c - L parallel network:

$$
\frac{1}{Z_{\text{total}}} = \frac{1}{Z_c} + \frac{1}{j2\pi fL} = \frac{j2\pi fL + Z_c}{j2\pi fLZ_c} \quad \implies \quad Z_{\text{total}} = \frac{j2\pi fLZ_c}{j2\pi fL + Z_c}.
$$

Note that sometimes $2\pi f$ is denoted as ω , which is the angular frequency. Now, $p(t) - p_{\text{distal}} = Z_{\text{total}}Q_{\text{in}}$. The rest of this derivation follows the same procedure for 3-WK.

Necessity of the inductance in 4-WK? Better capture the frequency characteristics of the flow.

- At the low f range: $2\pi fL \ll Z_c$, hence $Z_{\rm total} \to 0$, which removes the characteristic impedance in the whole circuit;
- At the high f range: $2\pi f L \gg Z_c$, hence $Z_{\text{total}} \rightarrow Z_c$.

This means the inductance has no effect when the flow is steady, providing a zero resistance pathway to the rest of the circuit under steady flow conditions.

7.3 Moens-Korteweg Model of Pulse Wave Velocity

FIG. 2: The schematic for the derivation of Moens-Korteweg equation.

Equation 1 Assume linear elasticity (fixed Young's modulus, E), the stress(σ)-strain(ϵ) relation is

$$
\sigma = E\varepsilon = E\frac{\Delta R}{R} \quad \text{with} \quad \varepsilon = \frac{(2\pi(R + \Delta R) - 2\pi R)}{2\pi R} = \frac{\Delta R}{R}.
$$

Applying Newton's 2nd Law and re-arranging the expression leads to an expression of the pressure,

$$
m_{\text{wall}}a_{\text{wall}} = F_{\text{pressure}} - F_{\text{wall}}
$$

$$
0 = 2RL \times P - 2Lh \times \sigma \implies P = \frac{\sigma h}{R} = \frac{Eh}{R^2} \Delta R.
$$

Differentiating ν w.r.t. t , this leads to **equation 1**.

$$
\left(\frac{\partial p}{\partial t} = \frac{Eh}{R^2} \frac{\partial \Delta R}{\partial t}\right).
$$

Equation 2 Integrating the continuity equation over the vascular cross-sectional area

$$
\frac{1}{r} \frac{\partial r u_r}{\partial r} + \frac{1}{r} \frac{\partial \psi_\theta}{\partial \theta} + \frac{\partial u_z}{\partial z} = 0 \implies \int \left(\frac{1}{r} \frac{\partial r u_r}{\partial r} + \frac{\partial u_z}{\partial z} \right) \partial A = 0
$$

$$
\implies \int_{r=0}^{r=R} \left(\frac{1}{r} \frac{\partial r u_r}{\partial r} \right) 2\pi r \partial r + \pi R^2 \frac{\partial \overline{u_z}}{\partial z} = 0
$$

$$
\implies 2\pi R u_R + \pi R^2 \frac{\partial \overline{u_z}}{\partial z} = 0.
$$

Re-arrange leads to the **equation 2**,

$$
u_r = -\frac{R}{2} \frac{\partial \overline{u_z}}{\partial z},
$$

where the notation $\overline{u_z}$ denotes the average *z*-velocity across cross-section.

Equation 3 Assume negligible convective acceleration and no viscous losses, the Navier-Stokes *z*-momentum equation can be simplified as,

$$
\rho \left(\frac{\partial u_z}{\partial t} + u_r \frac{\partial u_z}{\partial r} + \frac{u_\theta}{r} \frac{\partial u_z}{\partial \theta} + u_z \frac{\partial u_z}{\partial z} \right) = -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u_z}{\partial \theta^2} + \frac{\partial^2 u_z}{\partial z^2} \right] + \rho f_z^2 = -\frac{\partial p}{\partial z}.
$$

Derivation of PVW First, let $u_r = \frac{\partial \Delta R}{\partial t}$ $\frac{\Delta K}{\partial t}$, this equates **equation 1** and **equation 2** and leads to **equation 4**

$$
u_r = -\frac{R}{2} \frac{\partial \overline{u_z}}{\partial z} = \underbrace{\frac{\partial \Delta R}{\partial t}}_{\text{equation 2}} = \underbrace{\frac{R^2}{Eh} \frac{\partial p}{\partial t}}_{\text{equation 1}}, \quad \Rightarrow \quad \underbrace{\frac{\partial \overline{u_z}}{\partial z}}_{\text{equation 4}} = -\frac{2R}{Eh} \frac{\partial p}{\partial t}
$$

Next, differentiate **equation 3** and **equation 4** w.r.t. t ,

$$
\rho \frac{\partial \overline{u_z}}{\partial t} = -\frac{\partial p}{\partial z} \qquad \text{differentiate} \qquad \rho \frac{\partial^2 \overline{u_z}}{\partial t \partial z} = -\frac{\partial^2 p}{\partial z^2},
$$
\n
$$
\frac{\partial \overline{u_z}}{\partial z} = -\frac{2R}{Eh} \frac{\partial p}{\partial t} \qquad \text{differentiate} \qquad \frac{\partial^2 \overline{u_z}}{\partial x \partial t} = -\frac{2R}{Eh} \frac{\partial^2 p}{\partial t^2},
$$

which allows us to equate the R.H.S. as

$$
\frac{\partial^2 p}{\partial z^2} = \frac{2R\rho}{Eh} \frac{\partial^2 p}{\partial t^2} \quad \Rightarrow \quad \frac{\partial^2 p}{\partial t^2} = \underbrace{\frac{Eh}{2R\rho}}_{c^2} \frac{\partial^2 p}{\partial z^2},
$$

colation $\overline{u_x}$ denotes the average z-velocity across cross-section.

Assume negligible convective acceleration and no viscous losses, the Navier-Stokes z-moment

an be simplified as,
 $\frac{du}{dx} + u_y \frac{\partial u_z}{\partial x} + \frac{u_\phi}{\partial x$ which can be subsequently re-arranged as the wave equation. Denote the term $\frac{E h}{2R\rho}=c^2$, for which the term c is the expression of the wave speed of pressure (*a.k.a.* pulse wave velocity, PVW). By definition, PVW increases with the stiffness of the vessels and decreases with the radius of the vessel.