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7.1 Lumped Parameter Modelling
Resistance, Compliance, and Intertance

Resistance Compliance Inertance

𝑄 = Δ𝑝/𝑅 𝑄 = 𝐶 𝜕𝑝
𝜕𝑡 𝑝 = 𝐿𝜕𝑄

𝜕𝑡

• Resistance 𝑅: analogous to the electrical resistance which models the dissipation of energy. The mass flow
rate 𝑄 is analogous to the electrical current (usually denoted by 𝐼), and the pressure 𝑝 is analogous to the
electrical voltage (usually denoted by 𝑉 ).

• Compliance 𝐶: this models the expansion of cardiovascular chambers under pressure, allowing it to store more
fluid.

• Inductor 𝐿: this models the inertance of the fluid. When the fluid momentum is substantial, as the pressure on
forward-flowing fluid reverses, the fluid will not suddenly reverse its direction, but decelerate over a transient.

Solving a Lumped Parameter Network Consider the example lumped parameter network,

𝑝1 𝑅1

𝑄1

𝑝2 𝑅2

𝑄2

𝑝3

𝐶
𝑄3

𝑝𝑔 = 0

... which yields a linear system with 4 unknowns (𝑝2, 𝑄1,
𝑄2, 𝑄3) and 4 simultaneous equations:

⎧⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

𝑝2 − 𝑝1 = 𝑅1𝑄1,

𝑝3 − 𝑝2 = 𝑅2𝑄2,

𝑄3 = 𝐶(𝑝(𝑡)
2 − 𝑝(𝑡−1)

2 )/Δ𝑡,

𝑄1 = 𝑄2 + 𝑄3.

Note that 𝑝(𝑡−1)
2 denotes the pressure 𝑝2 at the previous time step 𝑡 − 1; (𝑝(𝑡)

2 − 𝑝(𝑡−1)
2 )/Δ𝑡 is an expression of the time

derivative in the backward Euler fashion. (cf. electrical capacitor 𝐼 = 𝐶 ⋅ d𝑉 /d𝑡).

The above linear system can be arranged into a matrix system, Ax = b,

⎡
⎢
⎢
⎢
⎣

1 −𝑅1 0 0
−1 0 −𝑅2 0
−1 0 0 Δ𝑡

𝐶
0 −1 −1 −1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝑝2
𝑄1
𝑄2
𝑄3

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝑝1
−𝑝3

−𝑝(𝑡−1)
2
0

⎤
⎥
⎥
⎥
⎦

,

and can be easily solved by inversion of the coefficient matrix: x = A−1b.

7.2 Windkessel Models

FIG. 1: Left: the mechanical equivalence of three Windkessel models; Right: Input impedances of the three Wind-
kessels compared with the measured input impedance. (Westerhof et. al)
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2-element Windkessel Model

𝑝(𝑡)

𝑄in

𝑅 𝐶

Governing Equation:

d𝑝(𝑡)
d𝑡 + 𝑝(𝑡)

𝑅𝐶 = 𝑄in
𝐶

where 𝐶 denotes the vessel compliance (elasticity), 𝑅 de-
notes the peripheral (distal) resistance.

3-element Windkessel Model

𝑝(𝑡)

𝑝(𝑡) 𝑍𝑐 𝑝distal

𝑄in

𝑅

𝑄𝑅

𝐶

𝑄𝐶

Governing Equation:

𝜕𝑝(𝑡)
𝜕𝑡 + 𝑝(𝑡)

𝑅𝐶 = 𝑄𝑖𝑛
𝐶 (1 + 𝑍𝑐

𝑅 ) + 𝑍𝑐
𝜕𝑄in

𝜕𝑡

where 𝑍𝑐 is the characteristic impedance, 𝑝(𝑡) − 𝑝distal =
𝑍𝑐𝑄in.

Derivation

Apply Kirchhoff’s Current Law at node 𝑝distal: 𝑄in = 𝑄𝑅 +𝑄𝐶 . Moreover, since 𝑝(𝑡)−𝑝distal = 𝑍𝑐𝑄in ⇒ 𝑝distal =
𝑝(𝑡) − 𝑍𝑐𝑄in.

• Current passes through the resistor 𝑅:

𝑄𝑅 = 𝑝distal
𝑅 = 𝑝(𝑡) − 𝑍𝑐𝑄in

𝑅 = 𝑝(𝑡)
𝑅 − 𝑍𝑐𝑄in

𝑅 .

• Current passes through the capacitor 𝐶:

𝑄𝐶 = 𝐶 𝜕𝑝distal
𝜕𝑡 = 𝐶 𝜕[𝑝(𝑡) − 𝑍𝑐𝑄in]

𝜕𝑡 = 𝐶 𝜕𝑝(𝑡)
𝜕𝑡 − 𝐶𝑍𝑐

𝜕𝑄in
𝜕𝑡 .

Hence, the total flow 𝑄in is

𝑄in = 𝑄𝑅 + 𝑄𝐶

= 𝑝(𝑡)
𝑅 − 𝑍𝑐𝑄in

𝑅 + 𝐶 𝜕𝑝(𝑡)
𝜕𝑡 − 𝐶𝑍𝑐

𝜕𝑄in
𝜕𝑡 ,

rearrange, we get

𝐶 𝜕𝑝(𝑡)
𝜕𝑡 + 𝑝(𝑡)

𝑅 = (1 + 𝑍𝑐
𝑅 )𝑄in + 𝐶𝑍𝑐

𝜕𝑄in
𝜕𝑡 .

Divide both sides of the equation above by 𝐶, we will get the final governing equation as presented.

4-element Windkessel Model

𝑝(𝑡)

𝑝(𝑡)
𝑍𝑐

𝐿 𝑄in

𝑝distal

𝑅

𝑄𝑅

𝐶

𝑄𝐶

Governing Equation:

𝜕𝑝
𝜕𝑡 + 𝑝(𝑡)

𝑅𝐶 = 𝑄
𝐶 (1 + 𝑍total

𝑅 ) + 𝑍total
𝜕𝑄
𝜕𝑡

where 𝑍total = 𝑗𝜔𝐿𝑍𝑐
𝑗𝜔𝐿 + 𝑍𝑐

is the total impedance of the par-
allel network - the characteristic impedance, 𝑍𝑐 and the
inductor, 𝐿.
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Derivation

Apply Kirchhoff’s Current Law at node 𝑝distal: 𝑄in = 𝑄𝑅 + 𝑄𝐶 . However, we need to express 𝑝distal in terms of
𝑝(𝑡), hence need to solve the total impedance of the 𝑍𝑐-𝐿 parallel network:

1
𝑍total

= 1
𝑍𝑐

+ 1
𝑗2𝜋𝑓𝐿 = 𝑗2𝜋𝑓𝐿 + 𝑍𝑐

𝑗2𝜋𝑓𝐿𝑍𝑐
⟹ 𝑍total = 𝑗2𝜋𝑓𝐿𝑍𝑐

𝑗2𝜋𝑓𝐿 + 𝑍𝑐
.

Note that sometimes 2𝜋𝑓 is denoted as 𝜔, which is the angular frequency. Now, 𝑝(𝑡) − 𝑝distal = 𝑍total𝑄in. The
rest of this derivation follows the same procedure for 3-WK.

Necessity of the inductance in 4-WK? Better capture the frequency characteristics of the flow.

• At the low 𝑓 range: 2𝜋𝑓𝐿 ≪ 𝑍𝑐 , hence 𝑍total → 0, which removes the characteristic impedance in the
whole circuit;

• At the high 𝑓 range: 2𝜋𝑓𝐿 ≫ 𝑍𝑐 , hence 𝑍total → 𝑍𝑐 .

This means the inductance has no effect when the flow is steady, providing a zero resistance pathway to the
rest of the circuit under steady flow conditions.

7.3 Moens-Korteweg Model of Pulse Wave Velocity

pressure load, 

wall stress, 

linear wall 
elasticity, 

FIG. 2: The schematic for the derivation of Moens-Korteweg equation.

Equation 1 Assume linear elasticity (fixed Young’s modulus, 𝐸), the stress(𝜎)-strain(𝜀) relation is

𝜎 = 𝐸𝜀 = 𝐸 Δ𝑅
𝑅 with 𝜀 = (2𝜋(𝑅 + Δ𝑅) − 2𝜋𝑅)

2𝜋𝑅 = Δ𝑅
𝑅 .

Applying Newton’s 2nd Law and re-arranging the expression leads to an expression of the pressure,

𝑚wall𝑎wall = 𝐹pressure − 𝐹wall

0 = 2𝑅𝐿 × 𝑃 − 2𝐿ℎ × 𝜎 ⇒ 𝑃 = 𝜎ℎ
𝑅 = 𝐸ℎ

𝑅2 Δ𝑅.

Differentiating 𝑝 w.r.t. 𝑡, this leads to equation 1,

𝜕𝑝
𝜕𝑡 = 𝐸ℎ

𝑅2
𝜕Δ𝑅

𝜕𝑡 .
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Equation 2 Integrating the continuity equation over the vascular cross-sectional area

1
𝑟

𝜕𝑟𝑢𝑟
𝜕𝑟 +

�
�
��

0, axis-symmetrical
1
𝑟

𝜕𝑢𝜃
𝜕𝜃 + 𝜕𝑢𝑧

𝜕𝑧 = 0 ⇒ ∫ (
1
𝑟

𝜕𝑟𝑢𝑟
𝜕𝑟 + 𝜕𝑢𝑧

𝜕𝑧 )𝜕𝐴 = 0

⇒ ∫
𝑟=𝑅

𝑟=0 (
1
𝑟

𝜕𝑟𝑢𝑟
𝜕𝑟 )2𝜋𝑟𝜕𝑟 + 𝜋𝑅2 𝜕𝑢𝑧

𝜕𝑧 = 0

⇒ 2𝜋𝑅𝑢𝑅 + 𝜋𝑅2 𝜕𝑢𝑧
𝜕𝑧 = 0.

Re-arrange leads to the equation 2,

𝑢𝑟 = −𝑅
2

𝜕𝑢𝑧
𝜕𝑧 ,

where the notation 𝑢𝑧 denotes the average 𝑧-velocity across cross-section.

Equation 3 Assume negligible convective acceleration and no viscous losses, the Navier-Stokes 𝑧-momentum
equation can be simplified as,

𝜌(
𝜕𝑢𝑧
𝜕𝑡 +

�����������:0
𝑢𝑟

𝜕𝑢𝑧
𝜕𝑟 + 𝑢𝜃

𝑟
𝜕𝑢𝑧
𝜕𝜃 + 𝑢𝑧

𝜕𝑢𝑧
𝜕𝑧 ) = − 𝜕𝑝

𝜕𝑧 +
���������������:0

𝜇[
1
𝑟

𝜕
𝜕𝑟(𝑟𝜕𝑢𝑧

𝜕𝑟 ) + 1
𝑟2

𝜕2𝑢𝑧
𝜕𝜃2 + 𝜕2𝑢𝑧

𝜕𝑧2 ] +�
�>

0
𝜌𝑓𝑧 ⇒ 𝜌𝜕𝑢𝑧

𝜕𝑡 = − 𝜕𝑝
𝜕𝑧 .

Derivation of PVW First, let 𝑢𝑟 = 𝜕Δ𝑅
𝜕𝑡 , this equates equation 1 and equation 2 and leads to equation 4

𝑢𝑟 = −𝑅
2

𝜕𝑢𝑧
𝜕𝑧⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

equation 2

= 𝜕Δ𝑅
𝜕𝑡 = 𝑅2

𝐸ℎ
𝜕𝑝
𝜕𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

equation 1

, ⇒ 𝜕𝑢𝑧
𝜕𝑧 = − 2𝑅

𝐸ℎ
𝜕𝑝
𝜕𝑡⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

equation 4

Next, differentiate equation 3 and equation 4 w.r.t. 𝑡,

𝜌𝜕𝑢𝑧
𝜕𝑡 = − 𝜕𝑝

𝜕𝑧
differentiate−−−−−−−−→

w.r.t. 𝑡
𝜌𝜕2𝑢𝑧

𝜕𝑡𝜕𝑧 = − 𝜕2𝑝
𝜕𝑧2 ,

𝜕𝑢𝑧
𝜕𝑧 = − 2𝑅

𝐸ℎ
𝜕𝑝
𝜕𝑡

differentiate−−−−−−−−→
w.r.t. 𝑡

𝜕2𝑢𝑧
𝜕𝑧𝜕𝑡 = − 2𝑅

𝐸ℎ
𝜕2𝑝
𝜕𝑡2 ,

which allows us to equate the R.H.S. as

𝜕2𝑝
𝜕𝑧2 = 2𝑅𝜌

𝐸ℎ
𝜕2𝑝
𝜕𝑡2 ⇒ 𝜕2𝑝

𝜕𝑡2 = 𝐸ℎ
2𝑅𝜌⏟

𝑐2

𝜕2𝑝
𝜕𝑧2 ,

which can be subsequently re-arranged as the wave equation. Denote the term 𝐸ℎ
2𝑅𝜌 = 𝑐2, for which the term 𝑐 is the

expression of the wave speed of pressure (a.k.a. pulse wave velocity, PVW). By definition, PVW increases with the
stiffness of the vessels and decreases with the radius of the vessel.

Drafted by B. Li, September 28, 2024
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