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Any notes/figures demonstrated below are self-contained and included here for the purpose of completeness - some
of which may be absent from the main lecture materials. Please review with discretion.

S5.1 Boundary Layer Approximation
Motivation Albeit the N-S equation has been formulated early since the mid-1800s, it could not be solved except for
the flow in simple geometries (e.g., straight pipe). In 1904, Ludwig Prandtl (1875-1953) first proposed the boundary
layer approximation; in his idea, the flow is divided into 2 regions (Figure 1):

- outer flow region: flow can be approximated as inviscid and irrotational; the velocity field in this region is
solvable using the continuity equation and Euler equation (simplified from N-S equation for inviscid fluid flow),
and the pressure field is solved using Bernoulli’s theorem.

- inner flow region: flow near the wall, where viscous effects and rotationality cannot be neglected. We need to
solve the boundary layer equation.
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FIG. 1: A flat plate parallel to an oncoming flow. The near wall region is the boundary layer, where viscous effects
affect the flow. 𝛿99 denotes the boundary layer thickness where 𝑢 = 99%𝑈 . Also, note that 𝛿99 is NOT a streamline!

Boundary Layer Equation The boundary layer equation is an approximation to the N-S equation. To derive such,
we need to non-dimensionalise the 𝑥-component of the N-S momentum equation. Starting by defining the non-
dimensional variables

𝑥∗ = 𝑥
𝐿, 𝑦∗ = 𝑦

𝛿 , 𝑢∗ = 𝑢
𝑈 , 𝑣∗ = 𝑣

𝑉 , 𝑝∗ = 𝑝
𝑃0

= 𝑝
𝜌𝑈 2

where 𝐿 is the characteristic length scale, 𝛿 is the thickness of the boundary layer, 𝑈 , 𝑉 are the velocity scales in the
𝑥- and 𝑦-directions, respectively. 𝑃0 = 𝜌𝑈 2 is the characteristic pressure, derived from the Bernoulli’s theorem.

1. The non-dimensional continuity equation is

𝑈
𝐿

𝜕𝑢∗

𝜕𝑥∗ + 𝑉
𝛿

𝜕𝑢∗

𝜕𝑦∗ = 0. (1)

Note that, to satisfy the non-dimensional continuity equation, the order of magnitude of the first term must be
balanced to that of the second term, i.e., 𝑈

𝐿 and 𝑉
𝛿 should be of the same order of magnitude:

𝒪 (
𝑈
𝐿 ) + 𝒪 (

𝑉
𝛿 ) = 0, ⇒ 𝑈

𝐿 ∼ 𝑉
𝛿 ⇒ 𝑉 ∼ 𝑈𝛿

𝐿 (2)

2. The non-dimensional 𝑥-momentum equation is

𝑈 2

𝐿 𝑢∗ 𝜕𝑢∗

𝜕𝑥∗ + 𝑈𝑉
𝛿 𝑣∗ 𝜕𝑢∗

𝜕𝑦∗ = −𝑈 2

𝐿
𝜕𝑝∗

𝜕𝑥∗ + 𝜈 𝑈
𝐿2 (

𝜕2𝑢∗

𝜕𝑥∗2 + 𝐿2

𝛿2
𝜕2𝑢∗

𝜕𝑦∗2 ) . (3)

To further simplify this equation, we can take a few actions
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• Use the relation derived from Equation 2 to eliminate 𝑉 from Equation 3, i.e., 𝑈𝑉
𝛿 = 𝑈

𝛿 ⋅ 𝑈𝛿
𝐿 = 𝑈2

𝐿 ;

• Multiply Equation 3 by the term 𝐿/𝑈 2.

So far, the non-dimensional 𝑥-momentum equation looks like

𝑢∗ 𝜕𝑢∗

𝜕𝑥∗ + 𝑣∗ 𝜕𝑢∗

𝜕𝑦∗ = − 𝜕𝑝∗

𝜕𝑥∗ + 1
Re (

𝜕2𝑢∗

𝜕𝑥∗2 + 𝐿2

𝛿2
𝜕2𝑢∗

𝜕𝑦∗2 ) . (4)

Further,

• We restrict the analysis to ‘narrow’ channels only: 𝐿/𝛿 ≫ 1.
• We are interested in the type of flow that Re ≫ 1. This ensures that 1/Re term is safe to be eliminated.

So far, the revised non-dimensional 𝑥-momentum equation looks like

𝑢∗ 𝜕𝑢∗

𝜕𝑥∗ + 𝑣∗ 𝜕𝑢∗

𝜕𝑦∗ = − 𝜕𝑝∗

𝜕𝑥∗ + 1
Re

𝐿2

𝛿2
𝜕2𝑢∗

𝜕𝑦∗2 . (5)

The last question regards the term 1
Re

𝐿2

𝛿2 , since 1/Re ≪ 1 but 𝐿/𝛿 ≫ 1, which term dominates? We know the
order of magnitude of the L.H.S. and the R.H.S. of Equation 5 must balance:

𝒪(1) + 𝒪(1) = 𝒪(1) + 𝒪 (
1

Re
𝐿2

𝛿2 ) ,

Obviously, 𝒪 (
1

Re
𝐿2

𝛿2 ) = 𝒪(1). This means, 𝛿
𝐿 ∼ Re−1/2.

3. Similarly, the non-dimensional 𝑦-momentum equation can be simplified as

𝜕𝑝∗

𝜕𝑦∗ = 0. (6)

Re-dimentionalise Equation 1, Equation 5, and Equation 6, which are the boundary layer equations:

(mass) 𝜕𝑢
𝜕𝑥 + 𝜕𝑣

𝜕𝑦 = 0, (7)

(𝑥-momentum) 𝑢 𝜕𝑢
𝜕𝑥 + 𝑣 𝜕𝑢

𝜕𝑦 = − 𝜕𝑝
𝜕𝑥 + 𝜈 𝜕2𝑢

𝜕𝑦2 (8)

(𝑦-momentum)
𝜕𝑝
𝜕𝑦 = 0. (9)

Boundary Conditions For the type of the flow as illustrated in Figure 1, the boundary conditions are

𝑢 = 𝑈, at 𝑥 = 𝑦 = 0
𝑢 = 𝑣 = 0, at 𝑦 = 0, 𝑥 ≠ 0

𝑢 = 𝑈, as 𝑦 → ∞

Displacement Thickness The boundary layer thickness, 𝛿99 can be difficult to measure directly. One alternative
approach is finding the equivalence of 𝛿99 with the displacement thickness, 𝛿1(𝑥). As illustrated by Figure 2(a), 𝛿1(𝑥)
is a thin plate that obstructs the inviscid flow (stagnant layer).

The expression of 𝛿1(𝑥) is derived by equating the total mass flow at the inlet and at the inviscid (unobstructed) region,

𝜌 ∫
∞

0
𝑢(𝑥, 𝑦)d𝑦 = 𝜌 ∫

∞

𝛿1
𝑈d𝑦.

Divide both sides by 𝜌𝑈 , and split the integral,

𝜌 ∫
∞

0
𝑢∗d𝑦 = ∫

∞

𝛿1
d𝑦 ⟹ ∫

∞

0
𝑢∗d𝑦 = ∫

∞

0
d𝑦 − ∫

𝛿1

0
d𝑦 ⟹ 𝛿1(𝑥) = ∫

∞

0
(1 − 𝑢∗)d𝑦 .
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Momentum Thickness Themomentum thickness, 𝛿2(𝑥), is an alternative approximation of the boundary layer thick-
ness, for which 𝛿2(𝑥) has the same momentum deficit as the actual boundary layer profile, as shown by Figure 2(b).

Equating the ‘artificial’ momentum deficit created by 𝛿2 to the real momentum deficit raised from the velocity deficit,
we have

𝜌 ∫
𝛿2

0
𝑈 2 d𝑦

⏟⏟⏟⏟⏟⏟⏟⏟⏟
momentum deficit by 𝛿2

= ∫
∞

0
𝜌𝑢 ⋅ (𝑈 − 𝑢)⏟

velocity deficit

d𝑦 ⟹ 𝛿2(𝑥) = ∫
∞

0
𝑢∗(1 − 𝑢∗) d𝑦 .

Despite the abstraction lies in the concept of momentum thickness, it is particularly useful in finding the fluid drag and
skin friction on the plate.
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FIG. 2: Two approximations of the thickness of an actual boundary layer: (a) displacement thickness and (b) momen-
tum thickness.
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