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3.1 Fluid Viscosity
For the Newtonian fluid, the dynamic viscosity 𝜇 [Pa ⋅ s] is a fixed constant; whereas for the non-Newtonian fluid, the
viscosity varies with the shear stress 𝜏 [Pa] and shear rate ̇𝛾 [1/s].
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FIG. 1: Left: the concept of shear strain 𝛾 in a simple shear flow; Right: the rheological behaviour of viscous fluids
can be classified by the shear stress - shear rate ( ̇𝛾 = d𝛾/d𝑡) relations.

• Shear thickening: 𝜇 increases with shear rate - e.g., cornstarch paste;

• Shear thinning: 𝜇 decreases with shear rate - e.g., ketchup, blood;

• Bingham plastic: a yield stress 𝜏𝑦 impedes the fluid flow until 𝜏 > 𝜏𝑦.

Although the blood is frequently modelled as a Newtonian fluid, it is shear thinning with yield (a.k.a. Bingham pseu-
doplastic). The non-Newtonian behaviours of blood are due to the cell suspension (rather than the plasma), hence,
the viscosity is Hematocrit-dependent.

3.2 Flow in a Rectangular Duct
Consider the flow in a rectangular duct (length 𝐿, width 𝑤, height ℎ) in the Cartesian coordinate system (Figure 2).

Assumptions

• Fluid is homogeneous, incompressible and Newtonian with viscosity 𝜇 and density 𝜌;

• Flow has reached the steady state: 𝜕u/𝜕𝑡 = 0;

• Flow is fully developed along the 𝑥-direction: 𝜕u/𝜕𝑥 = 0;

• Zero velocity along the 𝑦- and 𝑧-directions: 𝑣 = 0, 𝑤 = 0;

• Negligible body force: f = 0.

Boundary Conditions Symmetrical flow profile at 𝑦 = 0 and 𝑧 = 0; no-slip condition at the wall 𝑦 = ±ℎ/2, 𝑧 = ±𝑤/2.

Aim Analytically solve for the flow velocity in the 𝑥-direction.

Solution The 𝑥-momentum equation is reduced to

0 = − 𝜕𝑝
𝜕𝑥 + 𝜇(

𝜕2𝑢
𝜕𝑦2 + 𝜕2𝑢

𝜕𝑧2 ).

Using separation of variables1, the analytical solution of 𝑢 is
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1for the full derivation, see the Supplementary slides posted on Blackboard
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FIG. 2: The schematic for the flow in a rectangular duct.

Integrating 𝑢 over the area, the flux 𝑄 can be expressed as

𝑄 = 𝜕𝑝
𝜕𝑥

𝑤ℎ3

12𝜇 [6(
ℎ
𝑤)

∞

∑
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𝜆−5
𝑛 tanh (

𝜆𝑛𝑤
ℎ ) − 1] ≈ 𝜕𝑝

𝜕𝑥
𝑤ℎ3

12𝜇 [1 − 0.6274(
ℎ
𝑤)].

Finally, by 𝑄 = Δ𝑝/𝑅, the flow resistance is

𝑅 = Δ𝑝
𝑄 = 12𝜇𝐿

𝑤ℎ3[1 − 0.6274(
ℎ
𝑤)]

.

3.3 Womersley Flow
Motivation To approximate the pulsatility nature of the flow in the cardiovascular system.

Assumptions

• Fluid is homogeneous, incompressible and Newtonian with viscosity 𝜇 and density 𝜌;

• Flow in a long straight tube, with a perfect circular cross-section at radius 𝑎;

• Axisymmetric along the 𝜃-axis: 𝜕/𝜕𝜃 = 0;

• The flow is fully developed along the 𝑧-axis: 𝜕u/𝜕𝑧 = 0;

• No swirls: 𝑢𝜃 = 0;

• No velocity along the radial direction: 𝑢𝑟 = 0;

• Negligible body force: f = 0.
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FIG. 3: The schematic of the Womersley flow in a pipe.

Boundary Conditions No-slip condition on the wall, parabolic condition as Poiseuille flow.
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Solution Procedure

Step 1 The 𝑧-momentum equation
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Assume the pressure gradient is sinusoidal: 𝜕𝑝/𝜕𝑧 = 𝐺0
2 𝑒𝑖𝜔𝑡, and following the sinusoidal 𝑧-velocity: 𝑢𝑧 =

𝑈(𝑟)𝑒𝑖𝜔𝑡:
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Step 2 The full solution of 𝑈(𝑟) involves a complementary function, which is formulated with the Bessel function of the
1st kind at 0th order, 𝐽0; also the particular integral, 𝑈𝑝𝑖 = −𝐺0/2𝑖𝜔𝜌:
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and 𝛼 denotes the non-dimensionalWormersley number: 𝛼 = 𝑎√
𝜔𝜌
𝜇 = 𝑎√

𝜔
𝜈 .

Step 3 To recover 𝑢𝑧 from 𝑈(𝑟):

𝑢𝑧(𝑟, 𝑡) = 𝑖
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Ostensibly, this solution is defined in the complex domain; but for simplicity, we only consider the real part to
interpret its physical meaning.

Extended Properties

1. Wall shear stress:

𝜏𝑟𝑧 = 𝜇 𝜕𝑢𝑧
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𝜕𝑠 .

2. Volume flow rate:

𝑄(𝑡) = ∫
𝑎

0
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𝜕𝑧}.

The Wormersley Number The Wormersley number 𝛼 is the ratio between unsteady inertia force and viscous force.

• 𝛼 ≤ 1: Quasi-steady, the velocity profile is basically scaled Poiseuille flow, mainly observed in the microvascu-
latures (e.g., capillaries, venules);

• 𝛼 > 1: Oscillatory, the velocity profile is balanced between viscous forces at the wall and inertial forces in the
centre. Common in large arteries (e.g., ascending aorta, carotid artery).
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FIG. 4: Womersley flow profiles. (a) Low 𝛼 (viscous dominates), (b) intermediate 𝛼, (c) high 𝛼 (inertia dominates).
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