3.1 Fluid Viscosity

For the Newtonian fluid, the dynamic viscosity μ [Pa · s] is a fixed constant; whereas for the non-Newtonian fluid, the viscosity varies with the shear stress τ [Pa] and shear rate $\dot{\gamma}$ [1/s].

FIG. 1: Left: the concept of shear strain γ in a simple shear flow; Right: the rheological behaviour of viscous fluids can be classified by the shear stress - shear rate ($\dot{\gamma} = d\gamma/dt$) relations.

- Shear thickening: μ increases with shear rate *e.g.*, cornstarch paste;
- Shear thinning: μ decreases with shear rate *e.g.*, ketchup, blood;
- Bingham plastic: a yield stress τ_v impedes the fluid flow until $\tau > \tau_v$.

Although the blood is frequently modelled as a Newtonian fluid, it is shear thinning with yield (*a.k.a.* Bingham pseudoplastic). The non-Newtonian behaviours of blood are due to the cell suspension (rather than the plasma), hence, the viscosity is Hematocrit-dependent.

3.2 Flow in a Rectangular Duct

Consider the flow in a rectangular duct (length *L*, width *w*, height *h*) in the Cartesian coordinate system (Figure 2).

Assumptions

- Fluid is homogeneous, incompressible and Newtonian with viscosity μ and density ρ ;
- Flow has reached the steady state: $\partial \mathbf{u}/\partial t = 0$;
- Flow is fully developed along the *x*-direction: $\partial \mathbf{u}/\partial x = 0$;
- Zero velocity along the *y* and *z*-directions: v = 0, w = 0;
- Negligible body force: $\mathbf{f} = 0$.

Boundary Conditions Symmetrical flow profile at y = 0 and z = 0; no-slip condition at the wall $y = \pm h/2$, $z = \pm w/2$.

Aim Analytically solve for the flow velocity in the *x*-direction.

Solution The *x*-momentum equation is reduced to

$$0 = -\frac{\partial p}{\partial x} + \mu \Big(\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \Big).$$

Using separation of variables¹, the analytical solution of u is

$$u = \frac{1}{2\mu} \frac{\partial p}{\partial x} \left[y^2 - \left(\frac{h}{2}\right)^2 - \sum_{n=0}^{\infty} A_n \cos\left(\frac{\lambda_n y}{h/2}\right) \cosh\left(\frac{\lambda_n z}{h/2}\right) \right], \quad \text{where } A_n = \frac{h^2 (-1)^n}{\lambda_n^3 \cosh\frac{\lambda_n w}{h}}, \quad \lambda_n = \frac{(2n+1)\pi}{2}.$$

¹for the full derivation, see the Supplementary slides posted on Blackboard

FIG. 2: The schematic for the flow in a rectangular duct.

Integrating u over the area, the flux Q can be expressed as

$$Q = \frac{\partial p}{\partial x} \frac{wh^3}{12\mu} \left[6\left(\frac{h}{w}\right) \sum_{n=0}^{\infty} \lambda_n^{-5} \tanh\left(\frac{\lambda_n w}{h}\right) - 1 \right] \approx \frac{\partial p}{\partial x} \frac{wh^3}{12\mu} \left[1 - 0.6274 \left(\frac{h}{w}\right) \right].$$

Finally, by $Q = \Delta p/R$, the flow resistance is

$$R = \frac{\Delta p}{Q} = \frac{12\mu L}{wh^3 \left[1 - 0.6274 \left(\frac{h}{w}\right)\right]}$$

3.3 Womersley Flow

Motivation To approximate the pulsatility nature of the flow in the cardiovascular system.

Assumptions

- Fluid is homogeneous, incompressible and Newtonian with viscosity μ and density ρ ;
- Flow in a long straight tube, with a perfect circular cross-section at radius *a*;
- Axisymmetric along the θ -axis: $\partial/\partial \theta = 0$;
- The flow is fully developed along the *z*-axis: $\partial \mathbf{u}/\partial z = 0$;
- No swirls: $u_{\theta} = 0$;
- No velocity along the radial direction: $u_r = 0$;
- Negligible body force: $\mathbf{f} = 0$.

FIG. 3: The schematic of the Womersley flow in a pipe.

Boundary Conditions No-slip condition on the wall, parabolic condition as Poiseuille flow.

Step 1 The *z*-momentum equation

$$\rho \left(\frac{\partial u_z}{\partial t} + u_r \frac{\partial u_z}{\partial r} + \frac{u_{\theta}}{r} \frac{\partial u_z}{\partial \theta} + u_z \frac{\partial u_z}{\partial z} \right)^0 = -\frac{\partial p}{\partial z} + \mu \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_z}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 u_z}{\partial \theta^2} + \frac{\partial^2 u_z}{\partial z^2} \right] + \rho f_z^{*0}$$

$$\Rightarrow \quad \rho \frac{\partial u_z}{\partial t} = -\frac{\partial p}{\partial z} + \mu \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u_z}{\partial r} \right).$$

Assume the pressure gradient is sinusoidal: $\partial p/\partial z = \frac{G_0}{2}e^{i\omega t}$, and following the sinusoidal *z*-velocity: $u_z = U(r)e^{i\omega t}$:

$$\left[i\omega U\rho + \frac{G_0}{2} - \mu \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial U}{\partial r}\right)\right] e^{i\omega t} = 0 \quad \xrightarrow{2^{\text{nd-order ODE}}} \quad \frac{\partial^2 U}{\partial r^2} + \frac{1}{r} \frac{\partial U}{\partial r} - \frac{i\omega\rho}{\mu} U = -\frac{G_0}{2\mu}$$

Step 2 The full solution of U(r) involves a complementary function, which is formulated with the Bessel function of the 1^{st} kind at 0^{th} order, J_0 ; also the particular integral, $U_{pi} = -G_0/2i\omega\rho$:

$$U(r) = \frac{iG_0}{2\omega\rho} \left[1 - \frac{J_0(i^{3/2}\alpha\frac{r}{a})}{J_0(i^{3/2}\alpha)} \right], \quad \text{with} \quad J_0(s) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{k!k!} \left(\frac{s}{2}\right)^{2k},$$

and α denotes the non-dimensional **Wormersley number**: $\alpha = a \sqrt{\frac{\omega \rho}{\mu}} = a \sqrt{\frac{\omega}{\nu}}$.

Step 3 To recover u_z from U(r):

$$u_{z}(r,t) = \frac{i}{\omega\rho} \frac{\partial p}{\partial z} \left[1 - \frac{J_{0}(i^{3/2}\alpha\frac{r}{a})}{J_{0}(i^{3/2}\alpha)} \right] = \frac{iG_{0}}{2\omega\rho} \left[1 - \frac{J_{0}(i^{3/2}\alpha\frac{r}{a})}{J_{0}(i^{3/2}\alpha)} \right] e^{i\omega t}$$

Ostensibly, this solution is defined in the complex domain; but for simplicity, we only consider the real part to interpret its physical meaning.

Extended Properties

1. Wall shear stress:

$$\tau_{rz} = \mu \frac{\partial u_z}{\partial r} = \mu \Re \left\{ -\frac{a}{i^{3/2} \alpha} \left(\frac{J_1(i^{3/2} \alpha)}{J_0(i^{3/2} \alpha)} \right) \frac{\partial p}{\partial z} \right\}, \quad \text{with} \quad J_1(s) = -\frac{\partial J_0(s)}{\partial s}$$

2. Volume flow rate:

$$Q(t) = \int_0^a 2\pi r u_z \mathrm{d}r = \Re \left\{ -\frac{\pi a^4}{i\mu\alpha^2} \left(1 - \frac{2J_1(i^{3/2}\alpha)}{\alpha i^{3/2}J_0(i^{3/2}\alpha)} \right) \frac{\partial p}{\partial z} \right\}.$$

The Wormersley Number The Wormersley number α is the ratio between unsteady inertia force and viscous force.

- *α* ≤ 1: Quasi-steady, the velocity profile is basically scaled Poiseuille flow, mainly observed in the microvasculatures (*e.g.*, capillaries, venules);
- $\alpha > 1$: **Oscillatory**, the velocity profile is balanced between viscous forces at the wall and inertial forces in the centre. Common in large arteries (*e.g.*, ascending aorta, carotid artery).

FIG. 4: Womersley flow profiles. (a) Low α (viscous dominates), (b) intermediate α , (c) high α (inertia dominates).