5.1 Dimensional Analysis

Buckingham- Π **Theorem** The Buckingham- Π theorem states that if an equation involving *k* variables is dimensionally homogeneous (*i.e.*, L.H.S. units = R.H.S. units),

$$u_1 = f(u_2, u_3, ..., u_k),$$

1

it can be reduced to a relationship among (k-r) independent dimensionless products, where *r* is the minimum number of reference dimensions required to describe the variables,

$$\Pi_1 = \phi(\Pi_2, \Pi_3, ... \Pi_{k-r}).$$

Variables: Acceleration of gravity, *g*; Bulk modulus, E_v ; Characteristic length, *L*; Density, ρ ; Frequency of oscillating flow, ω ; Pressure, *p*; Speed of sound, *c*; Surface tension, σ_s ; Velocity, *U*.

Dimensionless group	Name	Interpretation	Types of Applications	
ρUL/μ	Reynolds number, Re	inertia force viscous force	Generally of importance in all types of fluid dynamics problems	
U/\sqrt{gL}	Froude number, ${\rm Fr}$	inertia force gravitational force	Flow with a free surface	
p/ ho U	Euler number, Eu	pressure force inertia force	Problems in which pressure, or pressure differences, are of interest	
U/c	Mach number, Ma	inertia force compressibility force	Flows in which the compressibility of the fluid is important	
ωL/U	Strouhal number, St	inertia(local) force inertia (convective) force	Unsteady flow with a characteristic frequency of oscillation	
$ ho U^2 L/\sigma_s$	Weber number, We	inertia force surface tension force	Problems in which surface tension is important	

Table 1: Common variables and dimensionless groups in fluid mechanics.

Parameter	Symbol	Dimensions	Parameter	Symbol	Dimensions
Acceleration	а	$[L^1 T^{-2}]$	Surface tension	σ_s	$[M^1T^{-2}]$
Angle	$\theta, \phi,$ etc.	1 (none)	Velocity	U	$[L^1T^{-1}]$
Density	ρ	$[M^1L^{-3}]$	Viscosity	μ	$[M^1L^{-1}T^{-1}]$
Force	F	$[M^1 L^1 T^{-2}]$	Volume flow rate	Q	$[L^3T^{-1}]$
Frequency	f	$[T^{-1}]$	Pressure	р	$[M^1 L^{-1} T^{-2}]$

Table 2: Table of parameters with symbols and primary dimensions in two columns. [M]: mass, [T]: time; [L]: length.

5.2 Non-Dimensional Navier-Stokes Equation

· Define the non-dimensional variables

$$\mathbf{x}^* = \frac{\mathbf{x}}{L}, \qquad \mathbf{u}^* = \frac{\mathbf{u}}{U}, \qquad t^* = \frac{t}{L/U}, \qquad p^* = \frac{p}{P_0},$$

where L, U are the characteristic length and velocity, respectively.

· The dimensionless Navier-Stokes momentum equation is

$$\operatorname{Re}\left(\frac{\partial \mathbf{u}^*}{\partial t^*} + (\mathbf{u}^* \cdot \nabla^*)\mathbf{u}^*\right) = -\frac{P_0}{\frac{\mu U}{L}}\nabla^* p^* + \nabla^{*2}\mathbf{u}^*$$

where $P_0 = \frac{\mu U}{L} \max(1, \text{Re})$, *i.e.*, the viscous scale (Re < 1) or dynamic scale (Re > 1). This formulation ensures the pressure term has the same order of magnitude as other terms, since there is no natural scaling for pressure.

· The dimensionless continuity equation is

$$\nabla^* \cdot \mathbf{u}^* = 0.$$

Small Re flow (Re \ll 1) $P_0 = \mu U/L$ and the L.H.S. eliminated,

$$\operatorname{Re}\left(\frac{\partial \mathbf{u}^{*}}{\partial t^{*}} + (\mathbf{u}^{*} \cdot \nabla^{*})\mathbf{u}^{*}\right) = -\nabla^{*}p^{*} + \nabla^{*2}\mathbf{u}^{*} \implies \nabla^{*}p^{*} = \nabla^{*2}\mathbf{u}^{*} \iff \mu\nabla^{2}\mathbf{u} = \nabla\mu$$

which is known as the Stokes equation that can be solved analytically due to its linearity.

Governing Equation of Stokes Flow

Define the vorticity as $\boldsymbol{\omega} = \nabla \times \mathbf{u}$

$$\mu \nabla^2 \mathbf{u} = -\mu \nabla \times \boldsymbol{\omega}$$
 due to $\nabla \times \boldsymbol{\omega} = \nabla \times (\nabla \times \mathbf{u}) = \nabla \cdot \mathbf{u} - \nabla^2 \mathbf{u}$.

Further, take the curl of $\mu \nabla^2 \mathbf{u} = \nabla p$:

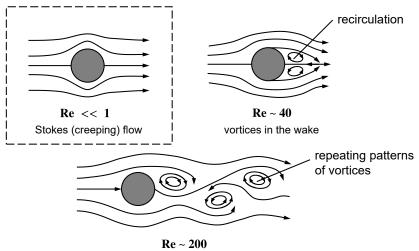
$$\underbrace{\nabla \times \nabla p}_{\text{is zero"}} = \nabla \times (\mu \nabla^2 \mathbf{u}) \implies 0 = -\mu \nabla \times (\nabla \times \boldsymbol{\omega})$$

$$0 = -\mu \begin{bmatrix} \nabla (\nabla \cdot \boldsymbol{\omega}) - \nabla^2 \boldsymbol{\omega} \\ \nabla (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A} \end{bmatrix}$$

$$0 = -\mu \begin{bmatrix} \nabla (\nabla \cdot \nabla \times \mathbf{u}) - \nabla^2 \boldsymbol{\omega} \end{bmatrix}.$$

$$0 = -\mu \begin{bmatrix} \nabla (\nabla \cdot \nabla \times \mathbf{u}) - \nabla^2 \boldsymbol{\omega} \end{bmatrix}.$$

The above derivation results in $\nabla^2 \omega = 0$, which is the governing equation of the Stokes flow.



Kármán vortex street

FIG. 1: Flow passing around a cylinder at different Reynolds numbers. The top left scenario depicts the Stokes flow when $Re \ll 1$ - no flow separation.

Large Re flow (Re \gg 1) $P_0 = \rho U^2$ and the viscus term eliminated (hence, the fluid is approximated nearly inviscid),

$$\frac{\partial \mathbf{u}^*}{\partial t^*} + (\mathbf{u}^* \cdot \nabla^*) \mathbf{u}^* = -\nabla^* p^* \quad \Longrightarrow \quad \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla p,$$

which is known as the Euler equation.

