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5.1 Dimensional Analysis

Buckingham-IT1 Theorem The Buckingham-II theorem states that if an equation involving k variables is dimension-
ally homogeneous (i.e., L.H.S. units = R.H.S. units),

ul = f(U2,M3, veey uk),

it can be reduced to a relationship among (k—r) independent dimensionless products, where r is the minimum number
of reference dimensions required to describe the variables,

Hl = ¢(H2, H3, "'Hk—r)'

Variables: Acceleration of gravity, g; Bulk modulus, E,; Characteristic length, L; Density, p;
Frequency of oscillating flow, w; Pressure, p; Speed of sound, ¢; Surface tension, o, ; Velocity, U.

Dimensionless

group Name Interpretation Types of Applications
U Ll Reynolds number, Re _inertia force- Generally of |mp0rFance in all
viscous force types of fluid dynamics problems
inertia force ;
Ul\/gL Froude number, Fr Sravitational force Flow with a free surface
Problems in which pressure, or
plpU Euler number, Eu pressure force pressure differences, are of
inertia force interest
Ule Mach number, Ma inertia force Flows in WhICh the _compressmlllty
compressibility force of the fluid is important
wL/U Strouhal number, St _inertia(local) force Unsteady flow with a chargctensnc
inertia (convective) force frequency of oscillation
U Lo, Weber number, We inerta force Problems in WhICh surface tension
surface tension force IS Important
Table 1: Common variables and dimensionless groups in fluid mechanics.
Parameter Symbol Dimensions \ Parameter Symbol Dimensions
Acceleration a [L'T72 Surface tension o, [M'T2]
Angle 0,¢,etc. 1 (none) Velocity U (L't
Density p (M'L™3) Viscosity U (M'L~'T™1
Force F [M'L'T72] | Volume flow rate Q (LT
Frequency  f (T~ Pressure p (M'L7T72

Table 2: Table of parameters with symbols and primary dimensions in two columns. [M]: mass, [T]: time; [L]: length.

5.2 Non-Dimensional Navier-Stokes Equation
* Define the non-dimensional variables

- s t p——)
U LIU P,
where L, U are the characteristic length and velocity, respectively.

« The dimensionless Navier-Stokes momentum equation is

Re( 5+ - Vou') = =2V + V2,

ot*
L

U . . . . .
where P, = Lt max(1, Re), i.e., the viscous scale (Re < 1) or dynamic scale (Re > 1). This formulation ensures
the pressure term has the same order of magnitude as other terms, since there is no natural scaling for pressure.

* The dimensionless continuity equation is
V*.u* =0.
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Small Re flow (Re < 1) P, = pU/L and the L.H.S. eliminated,

0
3k
Re( 2L 4 -V*)u*> =-Vp'+ Vit = V' =Vt = uVu=Vp

which is known as the Stokes equation that can be solved analytically due to its linearity.

Governing Equation of Stokes Flow

Define the vorticity as @ = V x u
uVu=-uVxe dueto Vxe=Vx(Vxu) =V-u-Vu

Further, take the curl of yVZu = Vp:

VxVp =VxuVu) = 0

“curl of grad 0
is zero”

—uV X (VX o)
—ul V(V-0)-Vie ]

by Vx(VxA)=V(V-A)—V2A
0 = —u[V(V -V xu)-V?al.

“div of curl
is zero”

The above derivation results in V2@ = 0, which is the governing equation of the Stokes flow.
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FIG. 1: Flow passing around a cylinder at different Reynolds numbers. The top left scenario depicts the Stokes flow
when Re « 1 - no flow separation.

Large Re flow (Re > 1) P, = pU? and the viscus term eliminated (hence, the fluid is approximated nearly inviscid),

*
aa‘t‘* + VU = -V = ‘Z—‘t‘ +(u-V)u=-Vp,

which is known as the Euler equation.

(a) (b)

FIG. 2: The velocity profile of flow between two parallel plates when the fluid is (a) affected by viscosity, (b) inviscid.
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