
Poisson and Laplace Equations in Electrostatic Fields

In electromagnetism, Gauss’s Law states that

∇ · E = 𝜌/𝜀 (1)

where E denotes the electric field, 𝜌 is the electric charge density, and 𝜀 is the permittivity of
the medium. Further, the electric field is related to the electric potential 𝑉 :

E = −∇𝑉. (2)

Combining Equation 1 and 2 together:

∇ · E = ∇ · (−∇𝑉) = −∇2𝑉 =
𝜌

𝜀
(3)

The boxed equation is known as the Poisson Equation of electrostatic fields.

If the electric charge density is 0, then

∇2𝑉 = 0. (4)

This equation is known as Laplace Equation of electrostatic fields.
—–

Example: Solution to Laplace Equation by Separation of Variables

In one hospital, patients who underwent pacemaker implantations are wheeled through a
long corridor. After a new lighting system was installed on the roof, unexpected pacemaker
failures were reported.

As a bioengineer, you are taking charge of the investigation. You suspect the pacemakers
were failing due to an excessively high electric field in the corridor; therefore, you carried
out a few measurements.

In terms of the dimension, the corridor has a rectangular cross-section, as shown in Figure 1:
0 ≤ 𝑥 ≤ 𝑎 and 0 ≤ 𝑦 ≤ 𝑏, where 𝑥 is the horizontal direction (wall to wall, width) and 𝑦 is
vertical (ground to roof, height). The corridor is straight and sufficiently long.

You also measured the electrical potential difference between the walls, ground and roof.
The measurements read

• No potential difference between the 2 walls and the ground, i.e.

– 𝑉 = 0 volts at 𝑥 = 0;

– 𝑉 = 0 volts at 𝑦 = 0;

– 𝑉 = 0 volts at 𝑥 = 𝑎;

• Potential difference between the ground and the roof is 𝑉 (𝑥) = 𝑉0, i.e.

– 𝑉 = 𝑉 (𝑥) volts at 𝑦 = 𝑏.
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Figure 1: Sketch of the hospital corridor.

The next task is to calculate the potential in this corridor. This requires solving the Laplace
equation.

Starting with Laplace’s equation:

∇2𝑉 = 0 → 𝜕2𝑉

𝜕𝑥2 + 𝜕2𝑉

𝜕𝑦2 +
�
�
��7

0
𝜕2𝑉

𝜕𝑧2 = 0

Here, we cancelled the 𝑧-direction term, as the corridor is straight and sufficiently long; by
assumption, there is no variation of the electric potential in the 𝑧-direction.

To solve this 2nd-order partial differential equation, we employ the method of separation
of variables. Using the relation solution: 𝑉 (𝑥, 𝑦) = 𝑋 (𝑥)𝑌 (𝑦):

𝜕2𝑉

𝜕𝑥2 + 𝜕2𝑉

𝜕𝑦2 =
𝜕2𝑋

𝜕𝑥2 𝑦 + 𝜕2𝑌

𝜕𝑦2 𝑥 = 0

Divide both sides by 𝑥𝑦:

1
𝑥

𝜕2𝑋

𝜕𝑥2 + 1
𝑦

𝜕2𝑌

𝜕𝑦2 = 0 ⇒ 1
𝑥

𝜕2𝑋

𝜕𝑥2 = −1
𝑦

𝜕2𝑌

𝜕𝑦2 = −𝑘2

where −𝑘2 is a constant term, and it is commonly referred to as the separation constant.
By employing this method, the Laplace equation has been separated into two homogeneous
ordinary differential equations (ODEs):

𝜕2𝑋

𝜕𝑥2 + 𝑘2𝑥 = 0 and
𝜕2𝑌

𝜕𝑦2 − 𝑘2𝑦 = 0.

To solve the 𝑥-dependent ODE: the characteristic equation 𝑟2 − 4𝑘2𝑟 = 0, there exist two
complex roots of 𝑟 , hence, we conclude the general solution must be in the form

𝑥 = 𝐴1𝑒
𝑗 𝑘𝑥 + 𝐴2𝑒

− 𝑗 𝑘𝑥 ,
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where 𝑗 denotes the imaginary unit, 𝐴1 and 𝐴2 are unknown constants subject to the bound-
ary conditions.

To solve the 𝑦-dependent ODE: the characteristic equation 𝑟2 + 4𝑘2𝑟 = 0, there exist two
real roots of 𝑟, hence, we conclude the general solution must be in the form

𝑦 = 𝐵1𝑒
𝑘𝑦 + 𝐵2𝑒

−𝑘𝑦

where 𝐵1 and 𝐵2 are unknown constants subject to the boundary conditions.

Therefore,

𝑉 (𝑥, 𝑦) = 𝑋 (𝑥)𝑌 (𝑦) = (𝐴1𝑒
𝑗 𝑘𝑥 + 𝐴2𝑒

− 𝑗 𝑘𝑥)(𝐵1𝑒
𝑘𝑦 + 𝐵2𝑒

−𝑘𝑦)

Substitute 4 boundary conditions into 𝑉 (𝑥, 𝑦):

1. 𝑉 = 0 when 𝑥 = 0:

0 = (𝐴1 + 𝐴2) (𝐵1𝑒
𝑘𝑦 + 𝐵2𝑒

−𝑘𝑦) → 𝐴1 = −𝐴2

Therefore,
𝑉 = 𝐴1(𝑒 𝑗 𝑘𝑥 − 𝑒− 𝑗 𝑘𝑥)(𝐵1𝑒

𝑘𝑦 + 𝐵2𝑒
−𝑘𝑦)

2. 𝑉 = 0 when 𝑦 = 0:

0 = 𝐴1(𝑒 𝑗 𝑘𝑥 − 𝑒− 𝑗 𝑘𝑥) (𝐵1 + 𝐵2) → 𝐵1 = −𝐵2

Therefore,
𝑉 = 𝐴1𝐵1(𝑒 𝑗 𝑘𝑥 − 𝑒− 𝑗 𝑘𝑥)(𝑒𝑘𝑦 − 𝑒−𝑘𝑦)

3. 𝑉 = 0 when 𝑥 = 𝑎:

0 = 𝐴1𝐵1 (𝑒 𝑗 𝑘𝑥 − 𝑒− 𝑗 𝑘𝑥)︸           ︷︷           ︸
=2 𝑗 sin(𝑘𝑥)

(𝑒𝑘𝑦 − 𝑒−𝑘𝑦)︸         ︷︷         ︸
=2 sinh(𝑘𝑦)

= 4 𝑗 𝐴1𝐵1 sin(𝑘𝑎) sinh(𝑘𝑦)

In this case, since sinh(𝑘𝑦) ≠ 0, and if 𝐴1 = 0 or 𝐵1 = 0, the solution will be trivial,
therefore, 𝐴1 ≠ 0 and 𝐵1 ≠ 0. The only term left sin(𝑘𝑎) is 0. Let 𝑘 = 𝑛𝜋

𝑎 , where
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𝑛 = 1, 2, 3, ..., we have:

𝑉 = 4 𝑗 𝐴1𝐵1︸   ︷︷   ︸
=𝐶

sin
(𝑛𝜋
𝑎
𝑥
)

sinh
(𝑛𝜋
𝑎
𝑦
)

= 𝐶 sin
(𝑛𝜋
𝑎
𝑥
)

sinh
(𝑛𝜋
𝑎
𝑦
)

=
∞∑
𝑛=1

𝐶𝑛 sin
(𝑛𝜋
𝑎
𝑥
)

sinh
(𝑛𝜋
𝑎
𝑦
)

4. 𝑉 = 𝑉 (𝑥) when 𝑦 = 𝑏:

𝑉 (𝑥) =
∞∑
𝑛=1

𝐶𝑛 sin
(𝑛𝜋
𝑎
𝑥
)

sinh
(𝑛𝜋
𝑎
𝑏
)

Let
𝐷𝑛 = 𝐶𝑛 sinh

(𝑛𝜋
𝑎
𝑏
)

Therefore, we can obtain the Fourier series:

𝑉 (𝑥) =
∞∑
𝑛=1

𝐷𝑛 sin
(𝑛𝜋
𝑎
𝑥
)

For 𝑉 (𝑥) = 𝑉0, expand 𝐷𝑛:

𝐷𝑛 =
2
𝑎

∫ 𝑎

0
𝑉0 sin

(𝑛𝜋
𝑎
𝑥
)

d𝑥

= −2
𝑎

[
𝑎𝑉0
𝑛𝜋

cos
(𝑛𝜋
𝑎
𝑥
) ]𝑎

0

=
2𝑉0
𝑛𝜋

(1 − (−1)𝑛)

Note that: if 𝑛 takes an even number, 𝐷𝑛 =
4𝑉0
𝑛𝜋 ; 𝑛 can never take odd numbers.

We can recover the expression for 𝐶𝑛, then find the expression for 𝑉 :

𝑉 (𝑥, 𝑦) =
∞∑
𝑛=1

2𝑉0
𝑛𝜋 sinh( 𝑛𝜋𝑎 𝑏) sin

(𝑛𝜋
𝑎
𝑥
)

sinh
(𝑛𝜋
𝑎
𝑦
)

As 𝑛 increases, we can obtain a Fourier series that tends to have a constant value.
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Figure 2: Analytical (left) and numerical (finite element simulation) solution plot of the
electric potential field 𝑉 (𝑥, 𝑦) with 𝑎 = 1 m, 𝑏 = 3 m, 𝑉0 = 300 V, and 𝑛 = 81.

—–
Notes by Binghuan Li, last compiled on October 5, 2025. This example is adopted from the
lectures of Electronics and Electromagnetics 2 at the Department of Bioengineering, Imperial
College London, delivered by Martin Holloway.
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