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The discriminant, D, used to check the type o f stationary point of a function f(x, y) is defined as
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local maxima or minima, if D >0
where a stationary point can be classified as 4 saddle, if D <0.

inconclusive, ifD=0

Question1: Let g(u,v) = (u— D2 +v exp(—v). Identify the values of u and v corresponding

to the stationary points of the function.
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e Hence, the stationary point is (1, 1).

Question 2: Let f(x,y) = 3 cos(x)+sin(2y— ). Identify the values of x and y correspond-

ing to the stationary points of the function.

0 0
e Calculate f(x, y), find x and/or y that satisfies M =0:
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3 = —-3sin(x) =0 = x = nx, where n is an integer.
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e Calculate , find x and/or y that satisfies =0:
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(2n—1)§, n is an integer
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e Hence, the stationary point is <n7r, >, where 7 is an integer.

Question 3: Let f(x,y) = xye "%, Identify the values of x, and y corresponding to the

stationary points of the function.
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e Calculate J(x y)’ find x and/or y that satisfy ASP)) =0:
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e Hence, the stationary points is (0, 0) and (1, 1/2).

[ You may wonder, why not (1, 0) or (0, 1/2)? Plug these pairs into the partial derivatives we have
obtained above, and you will notice they would not result in a zero derivative.]

Question 4:  g(u, v) = cos(u/v) + (v — 1)’ has a stationary point at u = 7, v = 1. Evaluate

the quantity D at u = 7, v = 1, and use it to identify the nature of the stationary point.
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e Calculate M
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T = o\ "o = —5 sin(u/v) — F cos(u/v) + 2.
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e Evaluate discriminant D:

D=()-(z*+2)—(-7)>=2 >0 = thisis a local minima.

Vector Plot of the Gradient of g(u, v) = cos(u/v) + (v-1)2
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Figure 1: Vector plot of the gradient of g(x, y) as defined in Question 4.



Question 5:  f(x,y) = ¥+ ¢=(»=D" hag a stationary point at x = —3,y = 1/2. Evaluate

the quantity D at x = —3, y = 1/2, and use it to identify the nature of the stationary point.
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Hence, —f = —8.
ay2 x=-3,y=0.5
. 9 of
e Mixed second partial derivative = 0 since — is invariant of x.
d0xdy y

e Evaluate discriminant D:

D=2)-(-8)— (O)2 =—-16 <0 = thisis asaddle point.

Vector Plot of the Gradient of f(x, y) = exp((x+3)%) exp(-(2y-1)%) 1
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Figure 2: Vector plot of the gradient of f(x, y) as defined in Question 5.



