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The discriminant, 𝐷, used to check the type o f stationary point of a function 𝑓(𝑥, 𝑦) is defined as

𝐷 = 𝜕2𝑓(𝑥, 𝑦)
𝜕𝑥2

𝜕2𝑓(𝑥, 𝑦)
𝜕𝑦2 − (

𝜕2𝑓(𝑥, 𝑦)
𝜕𝑥𝜕𝑦 )

2
,

where a stationary point can be classified as
⎧
⎪
⎨
⎪
⎩

local maxima or minima, if 𝐷 > 0
saddle, if 𝐷 < 0
inconclusive, if 𝐷 = 0

.

Question 1: Let 𝑔(𝑢, 𝑣) = (𝑢−1)2 +𝑣 exp(−𝑣). Identify the values of 𝑢 and 𝑣 corresponding
to the stationary points of the function.

• Calculate 𝜕𝑔(𝑢, 𝑣)
𝜕𝑢 , find 𝑢 and/or 𝑣 that satisfies 𝜕𝑔(𝑢, 𝑣)

𝜕𝑢 = 0:

𝜕𝑔(𝑢, 𝑣)
𝜕𝑢 = 2(𝑢 − 1) = 0 ⇒ 𝑢 = 1.

• Calculate 𝜕𝑔(𝑢, 𝑣)
𝜕𝑣 , find 𝑢 and/or 𝑣 that satisfies 𝜕𝑔(𝑢, 𝑣)

𝜕𝑣 = 0:

𝜕𝑔(𝑢, 𝑣)
𝜕𝑣 = (𝑣 − 1)𝑒−𝑣 = 0 ⇒ 𝑣 = 1.

• Hence, the stationary point is (1, 1).

Question 2: Let 𝑓(𝑥, 𝑦) = 3 cos(𝑥)+sin(2𝑦−𝜋). Identify the values of 𝑥 and 𝑦 correspond-
ing to the stationary points of the function.

• Calculate 𝜕𝑓(𝑥, 𝑦)
𝜕𝑥 , find 𝑥 and/or 𝑦 that satisfies 𝜕𝑓(𝑥, 𝑦)

𝜕𝑥 = 0:

𝜕𝑓(𝑥, 𝑦)
𝜕𝑥 = −3 sin(𝑥) = 0 ⇒ 𝑥 = 𝑛𝜋, where 𝑛 is an integer.
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• Calculate 𝜕𝑓(𝑥, 𝑦)
𝜕𝑦 , find 𝑥 and/or 𝑦 that satisfies 𝜕𝑓(𝑥, 𝑦)

𝜕𝑦 = 0:

𝜕𝑓(𝑥, 𝑦)
𝜕𝑦 = 2 cos(2𝑦−𝜋) = 0 ⇒ 2𝑦−𝜋 = ± 𝜋

2 , ±3𝜋
2 , ±5𝜋

2 , ...⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(2𝑛−1) 𝜋

2 , 𝑛 is an integer

⇒ 𝑦 = (2𝑛+1)𝜋
4 .

• Hence, the stationary point is (𝑛𝜋, (2𝑛 + 1)𝜋
4 ), where 𝑛 is an integer.

Question 3: Let 𝑓(𝑥, 𝑦) = 𝑥𝑦𝑒−𝑥−2𝑦. Identify the values of 𝑥, and 𝑦 corresponding to the
stationary points of the function.

• Calculate 𝜕𝑓(𝑥, 𝑦)
𝜕𝑥 , find 𝑥 and/or 𝑦 that satisfy 𝜕𝑓(𝑥, 𝑦)

𝜕𝑥 = 0:

𝜕𝑓(𝑥, 𝑦)
𝜕𝑥 = 𝑦(1 − 𝑥)𝑒−𝑥−2𝑦 = 0 ⇒ 𝑦 = 0 or 𝑥 = 1.

• Calculate 𝜕𝑓(𝑥, 𝑦)
𝜕𝑦 , find 𝑥 and/or 𝑦 that satisfies 𝜕𝑓(𝑥, 𝑦)

𝜕𝑦 = 0:

𝜕𝑓(𝑥, 𝑦)
𝜕𝑦 = 𝑥(1 − 2𝑦)𝑒−𝑥−2𝑦 = 0 ⇒ 𝑥 = 0 or 𝑦 = 1/2.

• Hence, the stationary points is (0, 0) and (1, 1/2).

[You may wonder, why not (1, 0) or (0, 1/2)? Plug these pairs into the partial derivatives we have
obtained above, and you will notice they would not result in a zero derivative.]

Question 4: 𝑔(𝑢, 𝑣) = cos(𝑢/𝑣) + (𝑣 − 1)2 has a stationary point at 𝑢 = 𝜋, 𝑣 = 1. Evaluate
the quantity 𝐷 at 𝑢 = 𝜋, 𝑣 = 1, and use it to identify the nature of the stationary point.

• Calculate 𝜕2𝑔(𝑢, 𝑣)
𝜕𝑢2

𝜕𝑔(𝑢, 𝑣)
𝜕𝑢 = − sin(𝑢/𝑣) ⋅ (1/𝑣)

𝜕2𝑔(𝑢, 𝑣)
𝜕𝑢2 = 𝜕

𝜕𝑢 (
𝜕𝑔(𝑢, 𝑣)

𝜕𝑢 ) = − 1
𝑣2 cos(𝑢/𝑣).

Hence, 𝜕2𝑔(𝑢, 𝑣)
𝜕𝑢2 |𝑢=𝜋,𝑣=1

= 1.
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• Calculate 𝜕2𝑔(𝑢, 𝑣)
𝜕𝑣2

𝜕𝑔(𝑢, 𝑣)
𝜕𝑣 = (𝑢/𝑣2) sin(𝑢/𝑣) + 2(𝑣 − 1)

𝜕2𝑔(𝑢, 𝑣)
𝜕𝑣2 = 𝜕

𝜕𝑣 (
𝜕𝑔(𝑢, 𝑣)

𝜕𝑣 ) = −2𝑢
𝑣3 sin(𝑢/𝑣) − 𝑢2

𝑣4 cos(𝑢/𝑣) + 2.

Hence, 𝜕2𝑔(𝑢, 𝑣)
𝜕𝑣2 |𝑢=𝜋,𝑣=1

= 𝜋2 + 2.

• Calculate 𝜕2𝑔(𝑢, 𝑣)
𝜕𝑢𝜕𝑣

𝜕2𝑔(𝑢, 𝑣)
𝜕𝑢𝜕𝑣 = 1

𝑣2 sin(𝑢/𝑣) + 𝑢
𝑣3 cos(𝑢/𝑣).

Hence, 𝜕2𝑔(𝑢, 𝑣)
𝜕𝑢𝜕𝑣 |𝑢=𝜋,𝑣=1

= −𝜋.

• Evaluate discriminant 𝐷:

𝐷 = (1) ⋅ (𝜋2 + 2) − (−𝜋)2 = 2 > 0 ⇒ this is a local minima.

Vector Plot of the Gradient of g(u, v) = cos(u/v) + (v-1)
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Figure 1: Vector plot of the gradient of 𝑔(𝑥, 𝑦) as defined in Question 4.
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Question 5: 𝑓(𝑥, 𝑦) = 𝑒(𝑥+3)2 𝑒−(2𝑦−1)2 has a stationary point at 𝑥 = −3,𝑦 = 1/2. Evaluate
the quantity 𝐷 at 𝑥 = −3, 𝑦 = 1/2, and use it to identify the nature of the stationary point.

• Calculate 𝜕2𝑓
𝜕𝑥2 :

𝜕𝑓
𝜕𝑥 = 2(𝑥 + 3) 𝑒(𝑥+3)2 ⇒ 𝜕2𝑓

𝜕𝑥2 = (2 + 4(𝑥 + 3)2) 𝑒(𝑥+3)2

Hence, 𝜕2𝑓
𝜕𝑥2 |𝑥=−3,𝑦=0.5

= 2.

• Calculate 𝜕2𝑓
𝜕𝑦2 :

𝜕𝑓
𝜕𝑦 = −4(2𝑦 − 1) 𝑒−(2𝑦−1)2 ⇒ 𝜕2𝑓

𝜕𝑥2 = −(8 + 16(2𝑦 − 1)2) 𝑒−(2𝑦−1)2 ,

Hence, 𝜕2𝑓
𝜕𝑦2 |𝑥=−3,𝑦=0.5

= −8.

• Mixed second partial derivative 𝜕2𝑓
𝜕𝑥𝜕𝑦 = 0 since 𝜕𝑓

𝜕𝑦 is invariant of 𝑥.

• Evaluate discriminant 𝐷:

𝐷 = (2) ⋅ (−8) − (0)2 = −16 < 0 ⇒ this is a saddle point.

Vector Plot of the Gradient of f(x, y) = exp((x+3)
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Figure 2: Vector plot of the gradient of 𝑓(𝑥, 𝑦) as defined in Question 5.
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