Pre-sessional learning for iBSc students Section 7: Total derivatives and gradients

Binghuan Li

binghuan.li19@imperial.ac.uk

August 2024

The total derivative, df , of a multi-variable function, $f(x, y)$, is given by

$$
df = \frac{\partial f(x, y)}{\partial x} dx + \frac{\partial f(x, y)}{\partial y} dy,
$$

where dx , dy represent the *small* changes in x and y , respectively. Hence, the total derivative combines the effects of changes of in both variables in the neighbourhood of a point, *i.e.*, from (x, y) to $(x + dx, y + dy)$.

Question 1: Let $f(x, y) = e^{3x} \ln(2y)$. By calculating the total derivative, find the approxi**mate change in** f **as** x , y **undergoes a small change from** $(1, 1)$ **to** $(1 + dx, 1 + dy)$.

\n- Calculate
$$
\frac{\partial f(x, y)}{\partial x}
$$
:\n
	\n- $$
	\frac{\partial f(x, y)}{\partial x} = 3e^{3x} \ln(2y).
	$$
	\n\n
\n- Calculate $\frac{\partial f(x, y)}{\partial y}$:\n
	\n- $$
	\frac{\partial f(x, y)}{\partial x} = e^{3x} \frac{1}{y}.
	$$
	\n\n
\n

• Therefore, the total derivative is given by

$$
df = 3e^{3x} \ln(2y) \, dx + e^{3x} \frac{1}{y} \, dy.
$$

By substituting (1, 1) into d f gives us the change in f from (1, 1) to $(1 + dx, 1 + dy)$:

$$
df\Big|_{x=1,y=1} = (3e^3 \ln(2)) \, dx + (e^3) \, dy.
$$

Question 2: Let $f(u, v, w) = u^3/w - uv \sin(v^2)$. By calculating the total derivative, find the **approximate change in** f as u , v , w undergoes a small change from $(1, 2, 2)$ to $(1 + du, 2 +$ $dv, 2 + dw$).

• Calculate $\frac{\partial f(u, v, w)}{\partial x}$ ∂u : $\partial f(u, v, w)$ ∂u $= 3u^2/w - v \sin(v^2)$. $\partial f(u, v, w)$

• Calculate
$$
\frac{\partial f(u, v, w)}{\partial v}
$$
:

$$
\frac{\partial f(u,v,w)}{\partial v} = -u\sin(v^2) - 2uv^2\cos(v^2).
$$

• Calculate $\frac{\partial f(u, v, w)}{\partial x}$ ∂w :

$$
\frac{\partial f(u,v,w)}{\partial w} = -u^3/w^2.
$$

• Therefore, the total derivative is given by

$$
df = (3u^2/w - v\sin(v^2)) du - (u\sin(v^2) + 2uv^2\cos(v^2)) dv - (u^3/w^2) dw.
$$

By substituting (1, 2, 2) into df gives us the change in f from (1, 2, 2) to (1 + du, 2 + $dv, 2 + dw$:

$$
df\Big|_{u=1,v=2,w=2} = \left(\frac{3}{2} - 2\sin(4)\right) du - (\sin(4) + 8\cos(4)) dv - \frac{1}{4} dw.
$$

The gradient of a scalar c is defined as

$$
\nabla c = \frac{\partial c}{\partial x}\hat{\mathbf{x}} + \frac{\partial c}{\partial y}\hat{\mathbf{y}} + \frac{\partial c}{\partial x}\hat{\mathbf{z}}\,,
$$

where $∇$ ('nabla') is the gradient operator, $\hat{\mathbf{x}}$, $\hat{\mathbf{y}}$, $\hat{\mathbf{z}}$ are the unit vectors in three orthonormal directions in the Cartesian coordinate system. Note that: c is a scalar, but ∇c is a vector.

Question 3: Calculate the two-dimensional vector $\nabla f(x, y)$, where $f(x, y) = 4x \ln(1 + x^2/y)$ **and , are Cartesian coordinates.**

• Calculate
$$
\frac{\partial f(x, y)}{\partial x}
$$
:
\n
$$
\frac{\partial f(x, y)}{\partial x} = 4 \ln(1 + x^2/y) + 4x \cdot \frac{2x}{1 + x^2} = 4 \ln(1 + x^2/y) + \frac{8x^2}{1 + x^2}
$$

• Calculate $\frac{\partial f(x, y)}{\partial x}$ ∂y : to ease the calculation, we can rearrange the expression of $f(x, y)$:

$$
f(x, y) = 4x \ln(1 + x^2/y) = 4x \ln\left(\frac{y + x^2}{y}\right) = 4x[\ln(y + x^2) - \ln y]^2.
$$

Hence,

$$
\frac{\partial f(x, y)}{\partial y} = 4x \left(\frac{1}{y + x^2} - \frac{1}{y} \right) = 4x \cdot \frac{-x^2}{y(y + x^2)} = \frac{-4x^3}{y(y + x^2)}.
$$

Therefore,

$$
\nabla f(x, y) = \left[4 \ln(1 + x^2/y) + \frac{8x^2}{1 + x^2} \right] \hat{\mathbf{x}} + \left[\frac{-4x^3}{y(y + x^2)} \right] \hat{\mathbf{y}}.
$$

(Alternatively, you can arrange this solution using a column vector, as shown by the solution on the sheet.)

Calculate the three-dimensional vector $\nabla f(x, y, z)$, where $f(x, y) =$ $sin(xy + 2z)$ $x^2 - y^2$ **and , , are Cartesian coordinates.**

• Calculate
$$
\frac{\partial f(x, y, z)}{\partial x}
$$
:
\n
$$
\frac{\partial f(x, y, z)}{\partial x} = \frac{1}{x^2 - y^2} \cdot y \cdot \cos(xy + 2z) + \sin(xy + 2z) \cdot -2x \cdot (x^2 - y^2)^{-2}
$$
\n
$$
= \frac{y(x^2 - y^2) \cos(xy + 2z) - 2x \sin(xy + 2z)}{(x^2 - y^2)^2}.
$$

• Calculate
$$
\frac{\partial f(x, y, z)}{\partial y}
$$
:
\n
$$
\frac{\partial f(x, y, z)}{\partial y} = \frac{1}{x^2 - y^2} \cdot x \cdot \cos(xy + 2z) + \sin(xy + 2z) \cdot 2y \cdot (x^2 - y^2)^{-2}
$$
\n
$$
= \frac{x(x^2 - y^2)\cos(xy + 2z) + 2y\sin(xy + 2z)}{(x^2 - y^2)^2}.
$$

• Calculate
$$
\frac{\partial f(x, y, z)}{\partial z}
$$
:

$$
\frac{\partial f(x, y, z)}{\partial z} = \frac{1}{x^2 - y^2} \cdot 2\cos(xy + 2z).
$$

Therefore,

$$
\nabla f(x, y, z) = \left[\frac{y(x^2 - y^2)\cos(xy + 2z) - 2x\sin(xy + 2z)}{(x^2 - y^2)^2} \right] \hat{\mathbf{x}} + \left[\frac{x(x^2 - y^2)\cos(xy + 2z) + 2y\sin(xy + 2z)}{(x^2 - y^2)^2} \right] \hat{\mathbf{y}} + \left[\frac{2\cos(xy + 2z)}{x^2 - y^2} \right] \hat{\mathbf{z}}.
$$

Question 5: Find the size (modulus of) the gradient and provide a normalized vector in the direction of steepest increase of the function $g(x, y) = 3x + y^2/x$ at the point $x = 1$, $y = 1$, given that x and y are Cartesian coordinates.

The gradient of $g(x, y)$ is given by

$$
\nabla g(x, y) = \left(3 - \frac{y^2}{x^2}\right)\hat{\mathbf{x}} + \left(2\frac{y}{x}\right)\hat{\mathbf{y}}.
$$

Hence at $x = 1$, $y = 1$, the gradient $\nabla g(1, 1) = 2\hat{x} + 2\hat{y}$. It might be easier to proceed with the vector form, *i.e.*,

$$
\nabla g = \begin{bmatrix} 2 \\ 2 \end{bmatrix}.
$$

The modulus of the gradient is therefore

$$
|\nabla g| = \sqrt{2^2 + 2^2} = 2\sqrt{2}.
$$

This enables us to normalise the vector,

$$
\frac{\nabla g}{|\nabla g|} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}.
$$

This unit vector tells us such a direction would result in the change of a scalar field $g(x, y)$ the most rapidly (the steepest ascent) along x and y (which is the physical interpretation of the gradient ∇).