Pre-sessional learning for iBSc students Section 7: Verifying solutions of partial differential equations

Binghuan Li binghuan.li19@imperial.ac.uk

August 2024

The diffusion equation in 1D is given by

$$
\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2},
$$

where C denotes a physical quantity to be conserved $e.g.,$ temperature distribution in heat transport, concentration in mass transport, or velocity in conservation of momentum. C has both temporal and spatial dependency, *i.e.*, $C(x, t)$. *D* is the diffusivity, which quantifies how fast the quantity (heat, mass, momentum) diffuses.

Question 1: Verify that $C(x, t) = C_0$ satisfies the 1D heat equation, where C_0 is a constant.

Since C_0 is a constant, the derivatives w.r.t. t and x are both 0,

$$
\frac{\partial C}{\partial t} = 0, \quad \frac{\partial^2 C}{\partial x^2} = 0.
$$

This equates L.H.S. and R.H.S. of the 1D diffusion equation. ✓

Question 2: Verify that $C(x, t) = C_0(1 + \frac{x}{t})$ $\frac{\gamma}{L}$) also satisfies the 1D heat equation, where C_0 **and are constants.**

- 1. Differentiate $C(x, t)$ w.r.t. t yields 0.
- 2. Differentiate $C(x, t)$ w.r.t. x yields

$$
\frac{\partial C(x,t)}{\partial x} = \frac{C_0}{L}, \quad \frac{\partial^2 C(x,t)}{\partial x^2} = 0.
$$

This equates L.H.S. and R.H.S. of the 1D diffusion equation. ✓

Question 3: Verify that $C(x, t) =$ 1 $4\pi Dt$ −² /4 **also satisfies the 1D heat equation.**

1. Differentiate $C(x, t)$ w.r.t. *t* yields

$$
\frac{\partial C(x,t)}{\partial t} = \sqrt{\frac{1}{4\pi D}} \cdot \left(-\frac{1}{2}t^{-\frac{3}{2}} \right) \cdot e^{-x^2/4Dt} + \sqrt{\frac{1}{4\pi Dt}} \cdot \left(\frac{x^2}{4D}t^{-2} \right) \cdot e^{-x^2/4Dt}
$$

$$
= \left(-\frac{1}{2}t^{-1} \right) \underbrace{\sqrt{\frac{1}{4\pi Dt}}}_{C(x,t)} e^{-x^2/4Dt} + \left(\frac{x^2}{4D}t^{-2} \right) \underbrace{\sqrt{\frac{1}{4\pi Dt}}}_{C(x,t)} e^{-x^2/4Dt}
$$

$$
= C(x,t) \cdot \left(-\frac{1}{2}t^{-1} + \frac{x^2}{4D}t^{-2} \right).
$$

2. Differentiate $C(x, t)$ w.r.t. *t* yields

$$
\frac{\partial C(x,t)}{\partial x} = C(x,t) \cdot \left(-\frac{x}{2Dt}\right),
$$

$$
\frac{\partial^2 C(x,t)}{\partial x^2} = C(x,t) \cdot \left(-\frac{x}{2Dt}\right)^2 + C(x,t) \cdot \left(-\frac{1}{2Dt}\right)
$$

$$
= C(x,t) \left[\left(-\frac{x}{2Dt}\right)^2 + \left(-\frac{1}{2Dt}\right) \right].
$$

3. Multiply $\frac{\partial^2 C(x,t)}{\partial x^2}$ ∂x^2 by D (which is the R.H.S. of the 1D diffusion equation)

(R.H.S.)
$$
\mathbf{D} \cdot C(x,t) \left[\left(-\frac{x}{2Dt} \right)^2 + \left(-\frac{1}{2Dt} \right) \right] = C(x,t) \left(\frac{x^2}{2Dt^2} - \frac{1}{2t} \right)
$$
 (L.H.S.)

The Schrödinger equation in 1D is given by

$$
i\frac{\partial \psi}{\partial t} = -\frac{\partial^2 \psi}{\partial x^2},
$$

where ψ is the wave function that describes the quantum state of a partial, and *i* is the imaginary unit (*i.e.*, $i^2 = -1$).

Question 4: Verify that $\psi(x, t) = e^{i(kx - \omega t)}$ is a solution of the 1D Schrödinger equation if $\omega = k^2$.

1. Differentiate $\psi(x, t)$ w.r.t. *t* yields

$$
\frac{\partial \psi(x,t)}{\partial t} = -ik^2 \cdot e^{i(kx - k^2t)}
$$

2. Differentiate $\psi(x, t)$ w.r.t. *x* yields

$$
\frac{\partial \psi(x,t)}{\partial x} = ik \cdot e^{i(kx - k^2t)},
$$

$$
\frac{\partial^2 \psi(x,t)}{\partial x^2} = (ik) \cdot (ik) \cdot e^{i(kx - k^2t)} = -k^2 e^{i(kx - k^2t)}.
$$

3. Multiply $\frac{\partial \psi(x, t)}{\partial x}$ ∂t by i (which is the L.H.S. of the 1D Schrödinger equation)

$$
(L.H.S.) i \cdot -ik^2 \cdot e^{i(kx - k^2t)} = k^2 \cdot e^{i(kx - k^2t)} = -1 \cdot -k^2 e^{i(kx - k^2t)} \quad (R.H.S.) \quad \blacktriangleleft
$$

Question 5: Verify that $\psi(x, t) = e^{-(kx + i\omega t)}$ is also a solution of the 1D Schrödinger equa**tion if** $\omega = -k^2$.

1. Differentiate $\psi(x, t)$ w.r.t. *t* yields

$$
\frac{\partial \psi(x,t)}{\partial t} = -ik^2 \cdot e^{-(kx+ik^2t)}
$$

2. Differentiate $\psi(x, t)$ w.r.t. x yields

$$
\frac{\partial \psi(x,t)}{\partial x} = -k \cdot e^{-(kx+ik^2t)},
$$

$$
\frac{\partial^2 \psi(x,t)}{\partial x^2} = k^2 \cdot e^{-(kx+ik^2t)}.
$$

3. Multiply $\frac{\partial \psi(x, t)}{\partial x}$ ∂t by i (which is the L.H.S. of the 1D Schrödinger equation)

 $(L.H.S.) i \cdot -ik^2 \cdot e^{-(kx+ik^2t)} = k^2 \cdot e^{-(kx+ik^2t)} = -1 \cdot k^2 \cdot e^{-(kx+ik^2t)}$ (R.H.S.) \checkmark