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From CFD to PINN

* Huge alternations in flow dynamics are associated with the
cardiovascular diseases (e.g., hypoplastic left-heart syndrome)

» In-silico fluid modelling is a powerful surrogate to the highly invasive
clinical measurements
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From CFD to PINN

* Huge alternations in flow dynamics are associated with the
cardiovascular diseases (e.g., hypoplastic left-heart syndrome)

» In-silico fluid modelling is a powerful surrogate to the highly invasive
clinical measurements

- Accurate

Numerical solvers . L
- Long simulation time

(CFD, FSi) - Tedious procedures
. . - Mesh-free
Physics-informed _ . .
Physics-constraint + data-assisted
Neural Networks Siminut dol i

- Forward and inverse capability
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Vanilla PINN for Fluid Simulation

Optimisation

Neural Auto- Loss
Network differentiation formulation
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+ 0, Z. + 0L,

. . ZpINN
Physics Loss Formulation [ = 9 Zpg + L ga }

The N-S momentum eqns are raised from F = ma

0
'0(8—1; + (u- V)u) =—Vp+ uViu + pt
~* 7 ¥

m a

Hence, F = ma = ma — F = 0 (for satisfying the conservation)

p(%—?—l—(u V)u )—I—Vp—uv2u—pf:()

If ma — F # 0, the loss raises (formulated in the 2-norm fashion)

gNS_H ( +(ﬁ-V)ﬁ>+Vp—,uV2ﬁ—pf

2

u: trained (imperfect) result from the network
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Overall objective

- Develop a physics-informed surrogate model to approximate
the fluid dynamics within parameterized vascular geometries;

- Exploit the opportunity of predicting unseen fluid dynamics with
a pre-trained model.

Benchmark I: Framework Realisation and Optimisation

» Evaluate the feasibility of using performance-enhancing techniques:
adaptive learning rate (ADR), hard boundary (HB), increase order
(10)

Benchmark ll: Multi-Case Training and Prediction

» Implement the case hyper-network to simultaneously train multiple
parametrised cases, and predict the unseen cases with the model
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Problem Setup and Network
Architecture
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Fluid Mechanics & Geometry Transformation

Steady flow

Inlet outlet  Neglected body force
Pin = 0.0136 Pa wall Dot ={ Pa J y
_ (Pin—Pout\ [ 4R? * Non-slip wall condition
uin_( 2uL )( 4 )m/s Uwall = Uwal = 0 m/s P
vin = 0m/s
coordinate S———
transformation « p=1000 kg/m3
« u=0.00185kg/m s
1 (z — p)?
R(w) = RO - A\/27T7 eXp |\ — T‘z * Upax = 9256'3 m/S
Adopted from Sun et al. (2020) e Re =500

A =0.004, stenosis Q

% A =-0.004, aneurysm
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Performance-Enhancing Techniques

1- Adaptive Leaning Rate (ALR)

X The step-decay schedule cannot ensure the thorough the current

convergence Is;

v" ALR continuously tracks the speed of convergence, decaying the LR

when oscillations detected.

Jw) Jw)

sk %

w w w w

Local oscillation
with large LR

Slow convergence
with small LR
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Performance-Enhancing Techniques

1- Adaptive Leaning Rate (ALR)
X The step-decay schedule cannot ensure the thorough the current
convergence Is;

v" ALR continuously tracks the speed of convergence, decaying the LR
when oscillations detected.
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Performance-Enhancing Techniques

1- Adaptive Leaning Rate (ALR)

X The step-decay schedule cannot ensure the thorough the current
convergence Is;

v" ALR continuously tracks the speed of convergence, decaying the LR
when oscillations detected.

2- Hard Boundary (HB) Correction

X Constraining the boundary conditions in NN increases the DoF of NN;

v By using a hard boundary post layer, we can explicitly impose the
desired boundary conditions to the domain.
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Inside a Neuron
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Q: can the tanh activate function model higher-order functions?
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Performance-Enhancing Techniques

1- Adaptive Leaning Rate (ALR)

X The step-decay schedule cannot ensure the thorough the current
convergence Is;

v" ALR continuously tracks the speed of convergence, decaying the LR
when oscillations detected.

2- Hard Boundary (HB) Correction

X Constraining the boundary conditions in NN increases the DoF of NN;

v By using a hard boundary post layer, we can explicitly impose the
desired boundary conditions to the domain.

3- Increase Order (10)

X tanh may not be able to model higher-order functions;

v Pre-compute the 2"9%—order spatial coordinates may help NN better
model the higher-order functions.
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Results and Discussion

© Imperial College London



Framework Realisation and Optimisation
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Framework Realisation and Optimisation
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Stenosis & Aneurysm Cases
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Secondary Flow
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Case Network

u error

Vv error

(%) 10443 7y anneRd
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p error
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12 cases were trained, 96 unseen cases were predicted with
feature parameters chosen between the training range.

Eu,max (%) €v,max (%)

3.39

8.35

Ep,max (70)
7.25

around the range boundaries.

Generally, errors are low in the middle of the range, high
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Summary

» Physics-informed neural networks are capable in accurately modelling
the fluid dynamics for various geometries with the feasible
performance-enhancing techniques.

« With a case hypernetwork, we unlocked the possibility of real-time
prediction of the fluid dynamics without re-training the case.

Limitations

1. 2-D idealistic geometries with heavy assumptions

2. lacks well-defined procedures to control the outcome (hyper-params)
3. Unsteady flow compatibility?

4. “Curse of dimensionality” — how can we mitigate it?
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Questions? @ Binghuan Li

binghuan.1lil9@imperial.ac.uk

- Wong HS, Li B, Chan WX, and Yap CH. Pre-Training Varied Vascular Geometries with a Deep

Learning Side Network in Physics-Informed Neural Network Simulations of Vascular Fluid Dynamics.
ESBiomech23

- Wong HS, Chan WX, Li B, and Yap CH. Multicase Physics-Informed Neural Network for Biomedical
Tube Flows. In press



	Surrogate Modelling of Fluid Dynamics within Various Vascular Geometries with Physics-Informed Neural Networks
	From CFD to PINN
	From CFD to PINN
	Vanilla PINN for Fluid Simulation
	Physics Loss Formulation
	Overall objective
	Problem Setup and Network Architecture
	Fluid Mechanics & Geometry Transformation
	Network architecture
	Performance-Enhancing Techniques
	Performance-Enhancing Techniques
	Network architecture
	Performance-Enhancing Techniques
	Inside a Neuron
	Performance-Enhancing Techniques
	Results and Discussion 
	Framework Realisation and Optimisation
	Framework Realisation and Optimisation
	Stenosis & Aneurysm Cases
	Secondary Flow
	Case Network
	Summary
	Questions?

