

BIOE40002 – Computer Fundamentals and Programming 1

Part I – Digital Logics, Lab 1

Binghuan Webster Li | Department of Bioengineering

binghuan.li19@imperial.ac.uk

January 20, 2022

- MBE Group 13: <u>Thursdays 11pm 1am, via Teams</u>
- Week 2-6 (5 weeks): Part I Digital Logics
- Week 7: Reading week, *no* computer session scheduled
- Week 8–11(4 weeks): Part II Programming 1
- For each session, your registration record will be kept to fulfil your learning credentials.

Part I – Digital Logic

- Aim: Understanding the basic of digital logic circuits and the mechanisms.
- Your Tasks:
 - Follow the guidance on the task sheet, build the circuit and perform a series of simulations in Quartus.
 - Upon the completion of five sessions, you are expected to finish the first 11 tasks in your work sheet
- What are available to you?
 - Key resources on BlackBoard: (1) Lab book (2) FAQ & Tips (3) course slides
 - Me 🙂
- What should you prepare?
 - A computer installed Quartus
 - Your logbook
 - Be a friendly partner

Part II – Programming 1

Imperial College London

• Python (3 weeks)

- Variables, data types
- Input and Output (I/O)
- Flow of control: for loops, while loops, if...else... conditions
- Functions and modular programming
- Useful/popular libraries

- Arduino (1 week)
 - Microcontrollers

Lab Sessions Guides

- Time, time and time!
- Guide No.1
 - \blacksquare You are deffo encouraged to show your face... I promise I will hi O
- *Do*s and *Don't*s
 - *Do* follow your lab book read all descriptions and figures !
 - *Do* think independently. Persuade yourself first.
 - *Do* ask questions. Unmute yourself when you need me.
 - *Do* take your own time, *don't* rush through the tasks.
 - *Do* keep your log-book.

- Log-book keeps a detailed record of your work...
 - Will *not* be assessed directly
 - Does not have to be a physical notebook
 - Take notes, regardless of your results are correct or wrong
- How would you structure your log-book?
 - A. Title Date & task number
 - B. Aims What you planned to do
 - C. Results What results were obtained
 - D. Discussion
 - a) How they were obtained
 - b) How you think about the results
- Use tables and sketches where appropriate

A -	Parte: 07/11/2011 Exercise 5: # Determine the function for the following is. Alms& Objeties. a) A - (Do-X b) A - (Do-X.
С	Results. * a) is a NOT gate. b) is an AND gate.
D -	for Yeshits where obtained * True table: $\frac{A X : \overline{A}}{D 1 1}$ $\frac{A B AB : X}{D 0 0 0}$ $\frac{A B AB : X}{D 0 0}$ $\frac{A B AB : X}{A B AB : X}$ $\frac{A B AB : X}{A B AB : X}$ $\frac{A B AB : X}{A B AB : X}$ $\frac{A B AB : X}{A B A A A A A A A A $

Questions?

- Recap (~ 10 mins)
 - Notations in digital logic
 - Logic gates and truth tables
 - Laws of Boolean algebra
 - CMOS
- Lab work kick-off

Common notations in digital logic

- 1 'high voltage', 'true', 'on'...
- 0 'low voltage', 'false', 'off'...

Logic Gates and Truth Tables - 1

Logic Gates and Truth Tables - 2

NOR	NAND	XOR	XNOR		
$OUT = \overline{A + B}$	$OUT = \overline{A \cdot B}$	$OUT = A \oplus B$	$OUT = \overline{A \oplus B}$		
$\begin{array}{c c} A \\ \hline B \\ \hline \end{array} \ge 1 \\ OUT \\ \hline \end{array}$	$\frac{A}{B}$		A =1 OUT		
A B OUT 0 0 1 0 1 0 1 0 0 1 1 0 1 1 0	A B OUT 0 0 1 0 1 1 1 0 1 1 1 0 1 1 0	A B OUT 0 0 0 0 1 1 1 0 1 1 1 0 1 1 0	A B OUT 0 0 1 0 1 0 1 0 0 1 1 1		

"X" – exclusive

Produce TRUE when two inputs are different

Laws of Boolean Algebra

• Commutative

 $A \cdot B = B \cdot A$, A + B = B + A

• Associative

 $A \cdot (B \cdot C) = (A \cdot B) \cdot C = A \cdot B \cdot C$ A + (B + C) = (A + B) + C = A + B + C

• Distributive

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

$$A + (B \cdot C) = (A + B) \cdot (A + C)$$

• De Morgan's Theorem

 $\overline{A} \cdot \overline{B} = \overline{A + B}, \qquad \overline{A} + \overline{B} = \overline{A \cdot B}$

• Absorption

$$A + (A \cdot B) = A$$
$$A \cdot (A + B) = A$$
$$A + (\overline{A} \cdot B) = A + B$$

CMOS - Metal-oxide semiconductor

That's it for now.

You can now proceed to the Exercise 1-5.

Task 1 – Gliders and Airliners

- Gliders have wings but no engines
- Airliners have both wings and engines

Wings (A)	Engine (B)	Glider (X)	Airliner (Y)
0	0	0	0
0	1	0	0
1	0	1	0
1	1	0	1
		$X = A \cdot \overline{B}$	$Y = A \cdot B$

Task 2 – Verify De Morgan's Theorem

$\overline{A+B} = \overline{A} \cdot \overline{B}$					$\overline{A \cdot B} = \overline{A} + \overline{B}$							
					~							~
A	В	$\overline{(A+B)}$	\overline{A}	\overline{B}	$\overline{A} \cdot \overline{B}$		A	В	$\overline{(\boldsymbol{A}\cdot\boldsymbol{B})}$	Ā	\overline{B}	$\overline{A} + \overline{B}$
0	0	1	1	1	1		0	0	1	1	1	1
0	1	0	1	0	0		0	1	1	1	0	1
1	0	0	0	1	0		1	0	1	0	1	1
1	1	0	0	0	0		1	1	0	0	0	0

$$\left(\overline{V} + X\right) \cdot \left(W \cdot \left(\overline{Y} + Z\right)\right) + \overline{\left(\overline{V} + X\right)} \cdot \left(W \cdot \left(\overline{Y} + Z\right)\right)$$

$$= \underbrace{\left(\left(\overline{V} + X\right) + \overline{\left(\overline{V} + X\right)}\right)}_{1 \quad \text{Since } A + \overline{A} \equiv 1} \cdot \left(W \cdot \left(\overline{Y} + Z\right)\right)$$

$$= \left(W \cdot \left(\overline{Y} + Z\right)\right)$$

$$= W \cdot \overline{Y} + W \cdot Z$$
Distributive law

Task 4 – design a *NOR* gate using CMOS

- CMOS work as switches
- N-channel CMOS
 - '1' switch on
 - '0' switch off

P-channel CMOS
'1' – switch off
'0' – switch on

Task 5.1 – *NAND* gates analysis

a)
$$A - \Box - X$$

 $\overline{A - X}$
 $\overline{A - X}$
 $0 - 1$
 $1 - 0$
 $X = (\overline{A \cdot A}) = \overline{A}$
b) $A - \Box - \Box - X$
 $B - \Box - \Box - X$
 $B - \Box - \Box - X$
 $A - B - \Box - \Box - X$
 $A - B - \Box - \Box - X$
 $\overline{A - B - \Box - \Box - X}$
 $A - B - \Box - \Box - X$
 $\overline{A - B - \Box - \Box - X}$
 $A - B - \Box - \Box - X$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - \Box - X}$
 $\overline{A - B - \Box - X}$
 $\overline{A - A - \Box - X}$
 $\overline{A - B - \Box - X}$
 $\overline{A - A - Z}$
 $\overline{A - A - Z}$

$$X = \overline{(A \cdot B)} = A \cdot B$$

NAND gates can be used to create NOT gates NAND gates can be used to create AND gates

Task 5.2 – design an *OR* gate with *NAND* gates London

- We have seen $\overline{A} \cdot \overline{B} = \overline{A + B}$ (De Morgan's Theorem), thus $\overline{\overline{A} \cdot \overline{B}} = \underline{A + B}$
- The question has simplified to "use *NAND* gates to represent $\overline{\overline{A} \cdot \overline{B}}$
- *NOT / AND* gates are also available.

A	В	\overline{A}	\overline{B}	$X = \overline{(\overline{A} \cdot \overline{B})}$
0	0	1	1	0
0	1	1	0	0
1	0	1	1	0
1	1	0	0	1

