

BIOE40002 – Computer Fundamentals and Programming 1

Part I – Digital Logics, Lab 2

Binghuan Webster Li | Department of Bioengineering

<u>binghuan.li19@imperial.ac.uk</u>

January 27, 2022

Meme of the day...

-++-	
· ·	Todari's Cabadula
┃┣╼╋╼╋┥┫	I Odavis Schedule

- Recap (~ 10 mins)
 - From decimal to binary, binary addition
 - Half adders
 - Full adders
 - From 2-bit adders to 4-bit adders increase of the bit
- Live demonstration of Quartus Prime Lite
- Lab exercises 6 & 7
- Quiz time!

From decimal to binary

Example: convert $(11)_{10}$ into the binary form

- Step 1: strip down $(11)_{10}$ into the sum of 2^n $11 = 1 + 2 + 8 = 2^0 + 2^1 + 2^3$
- Step 2: express each presented term in 0 or 1

	2 ³	2 ²	2 ¹	2 ⁰
Presented?	YES	NO	YES	YES
Binary	1	0	1	1

• Therefore, $(11)_{10} = (1101)_2$

Imperial College London

To convert decimal to binary:

$$a_n \cdot 2^n + \dots + a_1 \cdot 2^1 + a_0 \cdot 2^0$$

Binary addition

Imperial College London

Example: perform addition $(11)_{10} + (7)_{10}$ in binary

6

Imperial College London

Half adders

- *Q*: How to use logic gates to perform binary additions?
- A: Start with 2-bit addition: a half adder

Α —		Α	В	С	S
B —	XOR S	1	1	1	0
		1	0	0	1
	& C	0	1	0	1
L	AND	0	0	0	0

Half –No *carry-in* from the previous step (column) can be taken in. It can only stick to the 2-bit additions!

$$(1)_{10} 0 1 \\ (3)_{10} 1 1 \\ (1)_{10} + (3)_{10} 1 0 0$$

Full adders

- Q: What if we want to perform additions with the carry-in from the previous steps?
- **C**_{in} S В • *A*: try with an intermediate adder! S C in Α HA From the previous block В ≥1 HA В C out
- Take a closer look to C_{in} : carry (out) from the last bit (see next slide)

Im	pe	riai	College
Lo	nd	on	

Cout

Increase the bit

Imperial College London

- In the last 2 slides, we have seen the use of adders for 2-bit additions.
- To increase the bit, we can achieve this by simply connecting full-adders together.

• A 4-bit adder – can evaluate e.g. 1010 + 0011

Questions?

Using Quartus Prime Lite v16.0

- License are required for Quartus Prime Lite users.
- Why bother? Use college standard set-ups in the <u>Software Hub</u>
 - Need a college <u>VPN</u> to use the Software Hub **on your own PC** A bit laggy...?
 - Remote connection to your college account!

- Two versions are available in the Software Hub
 - V 16.0 and V 20.0, very similar features
 - Go for v16.0!

Questions?

That's it for now.

You can now proceed to the Exercise 6 and 7.

Task 6 – Design a half-adder with NAND gatesImperial CollegeLondon

Α	В	С	S
1	1	1	0
1	0	0	1
0	1	0	1
0	0	0	0

- Grid size = 10ns
- end time = 1us

Task 7 – Design a full adder

<u>in</u>

in

in 📂

out

out

• design a full adder with two half adders and an OR gate

- Q1 One day, when you are having your beef jagga at JCR, a post-doc at EEE comes to you and says that he wants to build some adders. You know he has some real troubles as he was graduated from UCL. As a smart Bioeng student, can you help him to identify which of the following statement(s) regarding adders is/are NOT true?
 - a) A half adder is constructed with a XOR gate and an OR gate
 - b) A full adder is better than half adder as it has a carry out output
 - c) A full adder can do multi bit binary addition
 - d) A full adder is a combinational logic circuit

- Q2 The next week, the post-doc brings you a 4-bit addition circuit which is assembled by himself. However, the circuit does not work at all. You decide to help him debug. First, you compile a check-list. Which of the following statement(s) from the check-list should be true about a 4-bit addition machine?
 - a) It requires 4 full adders
 - b) It requires 5 full adders
 - c) The carry in of the full adder corresponding to the most significant bit is connected to the carry out of the full adder corresponding to the second most significant bit
 - d) The carry out of the full adder corresponding to the most significant bit is connected to the carry in of the full adder corresponding to the second most significant bit
 - e) None of the above is true