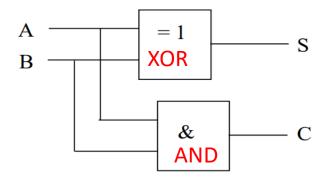


BIOE40002 – Computer Fundamentals and Programming 1

Part I – Digital Logics, Lab 3

Binghuan Webster Li | Department of Bioengineering

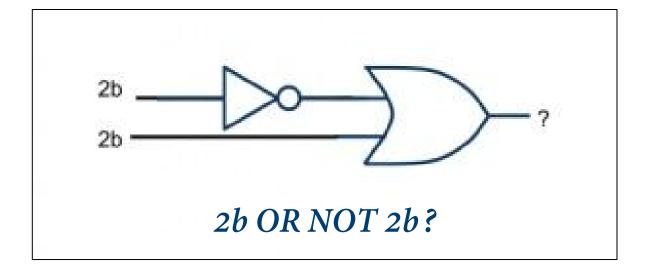

binghuan.li19@imperial.ac.uk

February 03, 2022

Corrections

Imperial College London

1. Half adder: the combination of an *AND* gate and an *XOR* gate

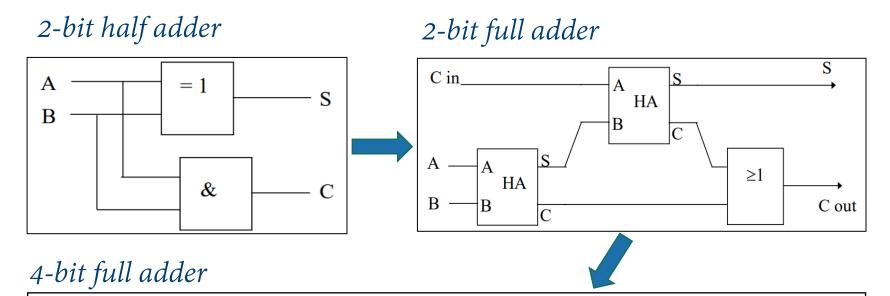

2. Quiz 1, statement 1: not true!

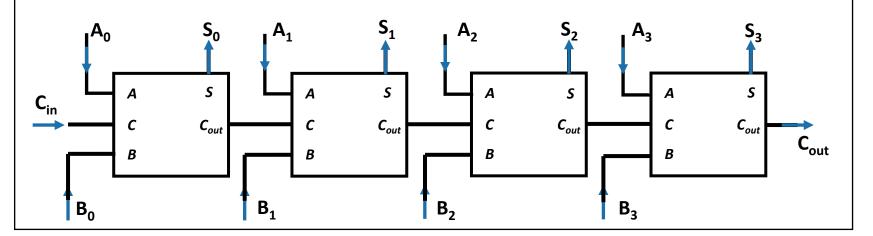
A half adder is constructed with a XOR gate and an OR gate

Meme of the day...

Imperial College London

Give a name to this circuit.


Today's Schedule


- Recap (~ 10 mins)
 - 4-bit addition machine
 - Signed binary representation
 - Binary substruction
- Lab exercises 8, 9, 10
- Quiz time!

Imperial College London

4-bit addition machine

Imperial College London

Signed binary representation

- *Q*: How to represent a negative number in the binary form?
- *A*: signed binary numbers
- *Key rule:* let the most significant bit represent a negative number, -2^n

Example: convert $(-11)_{10}$ into the binary form

- Step 1: strip down $(-11)_{10}$ into the sum of 2^n $(-11)_{10} = -16 + 4 + 1$
- Step 2: express each presented term as 1

	-2 ⁴	2 ³	2 ²	2 ¹	2 ⁰
Presented?	YES	NO	YES	NO	YES
Binary	1	0	1	0	1

• Therefore, $(-11)_{10} = (10101)_2$

Binary subtraction

Imperial College London

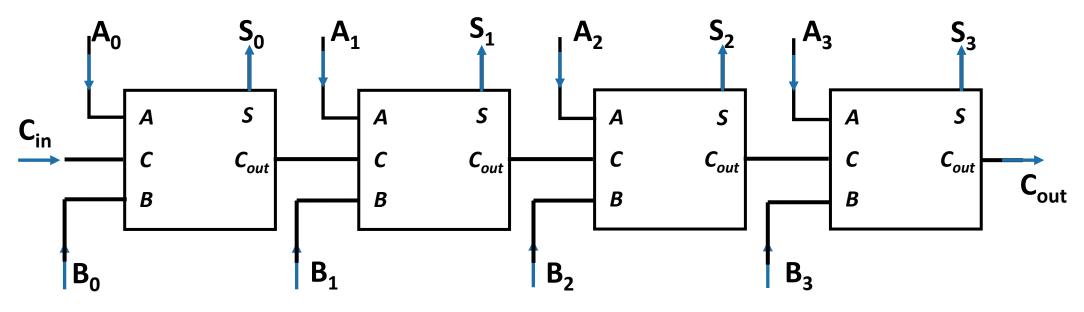
• *Rationale*: subtraction is equivalent to the addition of a negative value.

$$7 - 5 = 7 + (-5)$$

Example: 7 - 5

• Step 1: Convert each term on L.H.S into the signed binary and perform addition

$$7 - 5 = 7 + (-5) = (0111)_2 + (1011)_2$$


• Step 2: Discard the most significant bit in the result $(0111)_2 + (1011)_2 = (40010)_2$

Questions?

That's it for now.

You can now proceed to the Exercise 8, 9 and 10.

Task 8 - design a 4-bit addition circuit

• Verification:

	Name	Value at 0 ps	
is.	> A	B 0111	i
is	> B	B 0001	i
in_	Cin	B 0	i
out	Cout	B 0	9
*	> S2	B 1000	9

	Name	Value at 0 ps
<u> </u>	> A	B 1101
	> B	B 0010
in_	Cin	B 0
out	Cout	B 0
*	> S2	B 1111

	Name	Value at 0 ps	
<u>i</u>	> A	B 1111	
<u>i</u>	> B	B 0001	
in_	Cin	B 0	
out	Cout	B 1	
*	> S2	B 0000	

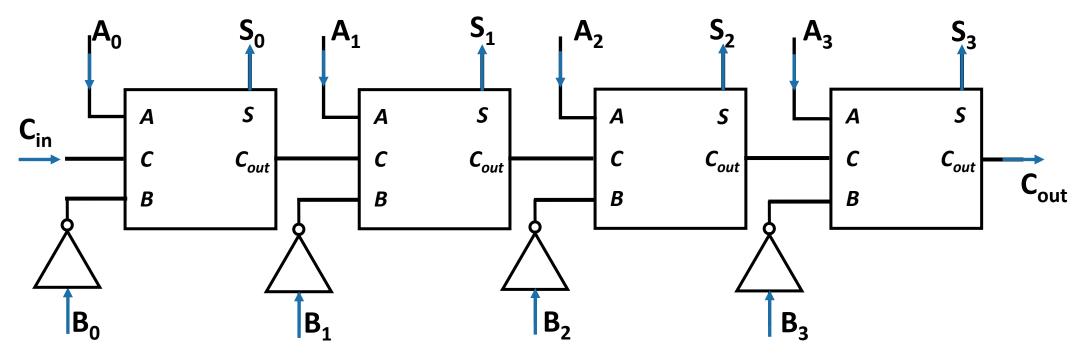
A	В	S	Cin	Cout
0111	0001	1000	0	0
1101	0010	1111	0	0
1111	0001	0000	0	1

Task 9 – Signed binary calculation

Imperial College London

• Write down the binary equivalent of -3 and -5.

$$(-3)_{10} = 101$$


$$(-5)_{10} = 1011$$

• Perform the additions of 1+(-1) and 3+(-7) in binary.

$(1)_{10}$	0 1	$(3)_{10}$	0011
$(-1)_{10}$	11	$(-7)_{10}$	1001
$3_{10} + (-7)_{10}$	100	$3_{10} + (-7)_{10}$	0 1 0 0

^{*} Discard the most significant bit (MSB)

Task 10 - design a 4-bit subtraction circuit

• The 4-bit subtraction circuit is obtained by inverting four B inputs.

• Verification:

	Name	Value at 0 ps
<u> </u>	> A	B 1101
is.	> B	B 0010
in_	Cin	B 0
out	Cout	B 1
*	> S2	B 1010

Quiz Time!

Imperial College London

- 1. Which of the followings is/are NOT true about 2's complement signed number representation?
 - (a) It can represent positive numbers
 - **(b)** It only represents negative numbers
 - (c) With 2's complement form, binary subtraction can be achieved using the addition machine
 - (d) Inverting every bit of a number and adding 1 will generate a negative number
- 2. Which of the following signed binary number(s) has/have a value that is closest to -1 in 2's complement form
 - **(a)** 10111
- **(b)** 01100

(c) 11101

(d) 10000