

# BIOE40002 – Computer Fundamentals and Programming 1

Part I – Digital Logics, Lab 6

Binghuan Webster Li | Department of Bioengineering

binghuan.li19@imperial.ac.uk

February 24, 2022

### Meme of the day...



## Today's Schedule

- Recap (~ 10 mins)
  - Selectors and multiplexers
  - Arithmetic-logic units
- Lab exercises 12 and 13
- Quick summary

### AND gates as selectors



| Enable | In | Out |
|--------|----|-----|
| 0      | 0  | 0   |
| 0      | 1  | O   |
| 1      | 0  | O   |
| 1      | 1  | 1   |

- When *Enable* is set to 1, output follows input
- When *Enable* is set to 0, output would remain 0 regardless of the value of input
- Selector

### 2 × 1 multiplexer

### Imperial College London



| • | When Select | ct is set to | 1, output | follows input |
|---|-------------|--------------|-----------|---------------|
|   | channel 1 ( |              | •         | •             |

• When *Select* is set to 0, output follows input channel 0 (*Ino*)

•  $2 \times 1$  multiplexer  $= \frac{1}{5}$ 

| _    | Out | Select | In 1 | In 0 |
|------|-----|--------|------|------|
| _    | 0   | 0      | 0    | 0    |
| In 0 | 0   | 0      | 1    | 0    |
|      | 1   | 0      | 0    | 1    |
|      | 1   | 0      | 1    | 1    |
| )    | 0   | 1      | 0    | 0    |
| In 1 | 1   | 1      | 1    | 0    |
| In 1 | 0   | 1      | 0    | 1    |
|      | 1   | 1      | 1    | 1    |

### 4 × 1 multiplexer



- 2 selector terminals So, S1
- Select the signal from *I0*, *I1*, *I2*, *I3*

• E.g., S0=1, S1=1; O=I3

It is your turn to design a  $8 \times 1$  multiplexer with two  $4 \times 1$  multiplexers and one  $2 \times 1$  multiplexer!

### Task 12 – Design an 8x1 multiplexer



- Selection terminal: *So-S2*
- Input signal: *Io-I*7

### 4-operation arithmetic-logic units

| Instruction 0 Set_B=1 | Instruction 1 Subtract | Operation |                                                   |
|-----------------------|------------------------|-----------|---------------------------------------------------|
| 0                     | 0                      | ADD       | • ADD = $A+B$                                     |
| 0                     | 1                      | SUB       | • $SUB = A + (-B)$                                |
| 1                     | 0                      | INC       | • INC = $A+1 \rightarrow \text{set } B=1$         |
| 1                     | 1                      | DEC       | • DEC = $A + (-1) \rightarrow \text{set } B = -1$ |

- Q: how to design such a 4-operation ALU with a 4-bit addition/subtraction machine and a multiplexer?
- *A*: think about how we set the input *B*!

### 4-operation arithmetic-logic units



- $A_4A_3A_2A_1 = 0001 \rightarrow \text{instruction 0 (Set\_B=1)} \rightarrow \text{INC, DEC}$
- $B_4B_3B_2B_1 = 4$ -bit inputs  $\rightarrow$  ADD, SUB
- $C_{in} \rightarrow instruction 1 (subtraction)$

|              | SEL = 0 | SEL=1 |
|--------------|---------|-------|
| $C_{in} = 0$ | INC     | ADD   |
| $C_{in}=1$   | DEC     | SUB   |

### Questions?

That's it for now.

You can now proceed to the Exercise 12 and 13.



# Summary of Digital Logics labs

#### Imperial College London

- *Lab 1*: Boolean algebra, logic gates and identities, p-/n-CMOS as switches
- Lab 2: Binary numbers, binary addition, half-adders, full-adders
- Lab 3: 4-bit addition machine, signed binary representation
- Lab 4: binary subtraction and 4-bit subtraction machine
- *Lab 5*: 4-bit addition-subtraction machine, multiplexers
- *Lab 6*: 4-operation arithmetic-logic unit

Thoughts?