
1

BIOE50010 – Programming 2

Binghuan Li | Department of Chemical Engineering

binghuan.li19@imperial.ac.uk

Computer Lab 8

November 27, 2023

mailto:binghuan.li19@imperial.ac.uk

Meme of the week 

2Source: https://www.pinterest.com/pin/462322717972269253/

Four Pillars of OOP
1) Abstraction focuses on the essential characteristics of an

object relative to the perspective of the viewer.

2) Encapsulation hides the details of the implementation of
an object.

3) Inheritance allows for a derived object type to inherit
features from another object type.

4) Polymorphism allows for overriding any inherited method
by creating your own method within its own class.

3

 We also very briefly mentioned aggregation and composition, which are the
alternatives to inheritance that describe the relationships between classes.

super()
• The super() function is used to give access to methods and properties of a

parent (or sibling) class.

4

Example
class Board:
 def __init__(self, rows, cols):
 for i in range(rows):
 self.board.append(['.']*cols)

class TicTacToe(Board):
 def __init__(self):
 super().__init__(3, 3)

• Board is a parent (super)
class that can be suited
into any board games with
of any dimension.

• TicTacToe is a child (sub)
class of Board with 3
columns and 3 rows.

triggers the __init__ method in Board, passes parameters rows = 3 and cols
= 3 to the superclass, hence initialise the board with the desired dimension

Shout your questions from Lab 7!

5

you should now understand…
 The concepts of abstraction, encapsulation and inheritance in OOP;
 How to build a class constructor, __init__;
 The purpose for using the implicit keyword self in Python OOP;
 How to use other special methods (e.g., __str__);

 How to implement inheritance in Python OOP.

we encourage you to understand…
 The concepts of polymorphism, aggregation, and composition;
 Best class design patterns and design architecture planning.

Decorators

6

Example from decorators.py
def debug_timer(some_function):

 import time

 def wrapper_function(*args, **kwargs):
 t0 = time.time()
 some_function(*args, **kwargs)
 dt = time.time() - t0
 print(f'Elapsed time: {dt} seconds')
 return wrapper_function

@debug_timer
def original_function(data1, data2):
 print(f'running fcn with {data1} and {data2}')

original_function('happy', 1)

Flow of execution

1. original_function is decorated
with @debug_timer, so when it is
triggered, it is replaced by the
wrapper_function

2. wrapper_function is called with
the arguments ‘happy’, 1

3. Execution returns to
wrapper_function, and the
elapsed time is calculated

A decorator is a special type of function that is used to
modify the behaviour of another function or method.

Static Methods
• Sometimes in OOP, we want a function that does not need to access to any

attributes of the current object
 i.e., a method that does not depend on variables followed by self.

• There are two possible ways to implement such a function:
 Example: check if someone is adult

7

Example with standalone function
class Person:
 def __init__(self, age):
 self.age = age;
 self.adult = is_adult(age);

def is_adult(age):
 return age > 18;

Example with static method
class Person:
 def __init__(self, age):
 self.age = age;
 self.adult = self.is_adult(age);

 @staticmethod
 def is_adult(age):
 return age > 18;

decorator (must have)
no need self

revoke with self

Class Methods
• In OOP, a class method can modify a class state that would apply across all

the instances of the class.
 Example: set the age of a person

8

Example
from datetime import date

class Person:
 def __init__(self, age = 0):
 self.age = age

 @classmethod
 def fromBirthYear(cls, year):
 return cls(date.today().year - year)

decorator (must have) cls is an implicit name that
refers to the class

Return the calculated age and
assign to self.age

Driver code

Console
20
22

p1 = Person(20)
print(p1.age)

p2 = Person.fromBirthYear(2001);
print(p2.age)

Your Task Today

9

• 4 mini-tasks, featuring the exercises of
 Computer animation with command prompts,

os.system(‘cls’) / os.system(‘clear’)
 Wrapper functions
 Time module in Python
 Decorators

 Read the sample code and console output carefully before you start.

Questions?

Your lecture live coding example

	Slide Number 1
	Meme of the week 
	Four Pillars of OOP
	super()
	Shout your questions from Lab 7!
	Decorators
	Static Methods
	Class Methods
	Your Task Today

