
1

BIOE50010 – Programming 2

Binghuan Li | Department of Chemical Engineering

binghuan.li19@imperial.ac.uk

Computer Lab 9

December 04, 2023

Maria Portela | Department of Bioengineering

maria.s-marques-figueiredo-portela18@imperial.ac.uk

mailto:binghuan.li19@imperial.ac.uk
mailto:maria.s-marques-figueiredo-portela18@imperial.ac.uk

Coursework 2

2

• Will be released on 8th December (Friday), to be summitted 1 week after.

• Retrospectively, this coursework was designed in the object-oriented
programming paradigm.

• But as you are aware, a solid mastery of the programming basics is sine qua
non – re-visiting your labs and lectures over the entire term?

• Fear not – think of how far you have gone!
 Very impressive (unexceptional) cohort performance in your coursework 1.

Questions should be logged on the

End of service time: 9 am on the submission day.

Why We Need Testing? One Example
• Suppose that you are implementing a numerical solver, using the 4th-order

Runge-Kutta scheme, to solve a 2nd-order ordinary differential equation.

3

guess initial values of x11, y11

calculate new y

i=i+1, iterate until convergence

• However, you want to check whether your implementation is correct – hence, you
come up with a test case, with the known analytical solution, to compare with the
numerical solution. This is commonly referred to as the sanity check.

governing eqn. boundary cond.
analytical sol.

numerical sol.
from RK4

?

f is the first order derivative of y w.r.t. x

Unit Test (1/)
• Lucky us, Python provides a build-in package, unittest, for the testing

purpose, e.g., to check the numerical example.

• unittest requires that:
• You put your tests into classes as methods
• You use a series of special assertion methods in the unittest.TestCase class

4

Example from test_point_pp.py
import unittest
import point_pp as point

class TestPointPP(unittest.TestCase):

 def test_add(self):
 result = point.add([10, 2],[1, 7])
 self.assertEqual(result, [11, 9])

Access to the testing methods
defined in the unittest package

Method names should begin with
a keyword test

assertEqual method evaluates the
coherence between the input and output

Unit Test (2/)

unittest Method Checks that… unittest Method Checks that…

assertEqual(a,b) a==b assertIsNone(x) x is None

assertNotEqual(a,b) a != b assertIsNotNone(x) x is not None

assertTrue(x) bool(x) is True assertIn(a, b) a in b

assertFalse(x) bool(x) is False assertNotIn(a, b) a not in b

assertIs(a,b) a is b assertIsInstance(a, b) isinstance(a, b)

assertIs(a,b) a is b assertNotIsInstance(a, b) not isinstance(a, b)

assertIsNot(a, b) a is not b

5

• unittest methods at a glance:

• also the setUp method and tearDown method allows you to config & post-
processing your testing objects.

OOP resources

• W3 Schools: Python Classes (w3schools.com)
• Tips: 8 Tips For Object-Oriented Programming in Python - GeeksforGeeks
• Review: Object-Oriented Design (article) | Khan Academy (good for

revising concepts – careful, examples are not Python!)
• Object-Oriented Programming (OOP) in Python 3 – Real Python

6

https://www.w3schools.com/python/python_classes.asp
https://www.geeksforgeeks.org/8-tips-for-object-oriented-programming-in-python/
https://www.khanacademy.org/computing/computer-programming/programming/object-oriented/a/review-object-oriented-design
https://realpython.com/python3-object-oriented-programming/#classes-vs-instances

Efficiency and algorithms resources

• Concepts overview: Introduction to Computation Complex Theory -
GeeksforGeeks

• Algorithm analysis (Computer Science): Analysis of Algorithms | Big-O
analysis - GeeksforGeeks

• Algorithm analysis (Computer Science): Asymptotic notation (article) |
Algorithms | Khan Academy

7

https://www.geeksforgeeks.org/introduction-to-computation-complex-theory/
https://www.geeksforgeeks.org/introduction-to-computation-complex-theory/
https://www.geeksforgeeks.org/analysis-algorithms-big-o-analysis/
https://www.geeksforgeeks.org/analysis-algorithms-big-o-analysis/
https://www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/asymptotic-notation
https://www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/asymptotic-notation

	Slide Number 1
	Coursework 2
	Why We Need Testing? One Example
	Unit Test (1/)
	Unit Test (2/)
	OOP resources
	Efficiency and algorithms resources

