Imperial College
London

</>| BIOE50010 - Programming 2

Computer Lab 9

Binghuan Li | Department of Chemical Engineering

binghuan.lil9@imperial.ac.uk

Maria Portela | Department of Bioengineering

maria.s-marques-figueiredo-portelal 8@imperial.ac.uk

December 04, 2023

mailto:binghuan.li19@imperial.ac.uk
mailto:maria.s-marques-figueiredo-portela18@imperial.ac.uk

Coursework 2

* Will be released on 8™ December (Friday), to be summitted 1 week after.

* Retrospectively, this coursework was designed in the object-oriented
programming paradigm.

* But as you are aware, a solid mastery of the programming basics is sine qua
non — re-visiting your labs and lectures over the entire term ?

* Fear not — think of how far you have gone!

" Veryimpressive (unexceptional) cohort performance in your coursework 1.

: Questions should be logged on the m el Ion o

|
' End of service time: 9 am on the submission day.

Why We Need Testing ¢ One Example

* Suppose that you are implementing a numerical solver, using the 4"-order
Runge-Kutta scheme, to solve a 2nd_grder ordinary differential equation.

ki; = f(z;,vy;), < guess initial values of x,,,y,, fis the first order derivative of y w.r.t. x

k2i = f (@i + h/2,y; + h/2k1;) h —
kai = f (2 + h/2, s + h/2k2;) Yi+1 = Yi + g(ku + 2ka; + 2k3; + kai).
ki; = f(z; + h,y; + hks;) calculate new y

i=i+1, iterate until convergence

* However, you want to check whether your implementation is correct — hence, you
come up with a test case, with the known analytical solution, to compare with the
numerical solution. This is commonly referred to as the sanity check.

governing eqn. boundary cond. 2z ? numerical sol.

. e 4 :
J 42 = 2%, y(0) = 1 |:> y=—7 (z* +4) analytical sol. <:> from RK4

’

Unit Test (1/)

* Lucky us, Python provides a build-in package, unittest, for the testing
purpose, e.g., to check the numerical example.

e unittest requires that:
* You put your tests into classes as methods

* You use a series of special assertion methods in the unittest.TestCase class

Example from test_point_pp.py

import unittest Access to the testing methods

import point pp as point / defined in the unittest package

class TestPointPP(unittest.TestCase): Method names should begin with

/ a keyword test
def test add(self):

result = point.add([10, 2],[1, 7]) assertEqual method evaluates the
self.assertEqual(result, [11, 9])

—

coherence between the input and output
e

Unit Test (2/)

 unittest methods at a glance:

unittest Method Checks that... unittest Method Checks that...
assertEqual(a,b) a==b assertIsNone(x) X is None
assertNotEqual(a,b) al=Db assertIsNotNone(x) X is not None
assertTrue(x) bool(x) is True assertIn(a, b) ain b
assertFalse(x) bool(x) is False assertNotIn(a, b) a not in b

assertIs(a,b)
assertIs(a,b)

assertIsNot(a, b)

ais b
ais b

a is not b

assertIsInstance(a, b)

assertNotIsInstance(a, b) not isinstance(a, b)

isinstance(a, b)

* also the setUp method and tearDown method allows you to config & post-
processing your testing objects.

OOP resources

* W3 Schools: Python Classes (w3schools.com)

* Tips: 8 Tips For Object-Oriented Programming in Python - GeeksforGeeks

* Review: Object-Oriented Design (article) | Khan Academy (good for
revising concepts — careful, examples are not Python!)

* Object-Oriented Programming (OOP) in Python 3 — Real Python

https://www.w3schools.com/python/python_classes.asp
https://www.geeksforgeeks.org/8-tips-for-object-oriented-programming-in-python/
https://www.khanacademy.org/computing/computer-programming/programming/object-oriented/a/review-object-oriented-design
https://realpython.com/python3-object-oriented-programming/#classes-vs-instances

Efficiency and algorithms resources

* Concepts overview: Introduction to Computation Complex Theory -
GeeksforGeeks

* Algorithm analysis (Computer Science): Analysis of Algorithms | Big-O

analysis - GeeksforGeeks

* Algorithm analysis (Computer Science): Asymptotic notation (article) |
Algorithms | Khan Academy

https://www.geeksforgeeks.org/introduction-to-computation-complex-theory/
https://www.geeksforgeeks.org/introduction-to-computation-complex-theory/
https://www.geeksforgeeks.org/analysis-algorithms-big-o-analysis/
https://www.geeksforgeeks.org/analysis-algorithms-big-o-analysis/
https://www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/asymptotic-notation
https://www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/asymptotic-notation

	Slide Number 1
	Coursework 2
	Why We Need Testing? One Example
	Unit Test (1/)
	Unit Test (2/)
	OOP resources
	Efficiency and algorithms resources

