

BIOE50011 – Signals and *Control*

MATLAB practical 2 – Poles and Stability

12 December, 2022

Learning objective

By the end of this MATLAB session you should be able to:

- Understand and derive the characteristics of electric circuit components: resistor *R*, capacitor *C*, inductor *L*
- Solve linear dynamic equations using the Laplace transform
- Determine how the system's dynamics depend on the poles of the transfer function
- Explain how the system components affect the poles in the *s*-plane

Poles and Stability – Recap

For a LTI system $G(s) =$ $N(s)$ $D(s)$ Poles, p_i are the solution of $D(s) = 0$

Three types of stability

- **Asymptotic stability**: $Re(p_i) < 0$
- **Instability**:
	- $Re(p_i) > 0$
- **Marginal stability**: $Re(p_i) = 0$

Task 2 - RLC circuit

Different values of *R, L* and *C* result in different poles in the *s*-plane and influence the systems dynamics

Task 2-Step responses and poles in the *s*-plane

Task 3 - Closed-loop control of the wheel system

$$
G(s) = \frac{10^5}{5s^3 + 5001s^2 + 2000s + 10^5K}
$$

final value theorem

$$
\lim_{s \to 0} s \frac{1}{s} G(s) = \frac{1}{K}
$$

When $K = 1$

- all poles have a negative real part
- the step response converges to $\frac{1}{\alpha}$ \overline{K} $= 1$

Task 3 - Step response and poles for varied *K*

Step response and stability

$\triangleright K < 20$: asymptotically stable

- **Dominant poles have negative** real parts
- Oscillation, converging to $1/K$

$\triangleright K = 20$: Marginal stable

- Real part of the dominant poles is 0
- Undamped oscillation

$\triangleright K > 20$: unstable

- **Dominant poles have positive** real parts
- Oscillation with an increasing amplitude

Task 3 - root locus

$$
G(s) = \frac{10^5}{5s^3 + 5001s^2 + 2000s + 10^5K}
$$

- A *root locus* plot is a graphical representation of the **poles' trajectory** in the complex plane with respect to the **variation of the feedback gain ().**
- Poles are labelled by x, zeros by o (if there is any)
- If we add poles with the variation of K on root locus plot, poles will overlay on the root locus trajectories!

Trajectory 2: locations of the second dominant pole with a varying

Task 4 – Performance of an approximated system

(1) Poles of the fan system

$$
G_{\omega}(s) = \frac{10^5}{5s^2 + 5001s + 2000}
$$

Poles
$$
p_{1,2} = \frac{-5001 \pm \sqrt{5001^2 - 4 \cdot 5 \cdot 2000}}{2 \cdot 5} \Rightarrow p_1 = -0.4
$$
 and $p_2 = -999.8$

negative real poles $→$ stable!

(2) DC gain of the fan system $G_{\omega}(s)$ $\alpha = \lim_{s \to 0} s$ 1 \overline{S} $G_{\omega}(s)$ = lim_{s→0} 10^{5} $5s^2 + 5001s + 2000$ $=50$

8 The angular velocity of the fan will converge to 50 with the unit step input!

Task 4 – Performance of an approximated system

(3)-(4) Dominant pole approximation

Dominant pole $p = 0.4 \Rightarrow$ the approximated system (derived in SG 1)

$$
\widehat{G}_{\omega}(s) = \frac{K}{s+0.4}
$$

Step response via finite value theorem: $\hat{\omega}(t) = 50(u(t) - e^{-0.4t})$

As $t \to \infty$, the step response of the system converges to 50 rad/s.

- \triangleright The fan will converge to a fixed wheel angular speed after a period time.
- \triangleright We can control the angular speed of the fan!

The dominant pole is far away from another pole

 \rightarrow good approximation!

Task 4 – Performance of an approximated system

 $(Flux \Phi)$

 $(d\theta/dt)$

Angular Velocity

 (T)

 $(b \theta)$

- Perform the same analysis to the **(5)**approximated **prize wheel** system:
	- The step response does NOT converge.
	- As $t \to \infty$, the wheel angle tends to infinite large.
	- \triangleright Therefore, the angle of the prize wheel **cannot** be controlled by a step input.

