

BIOE50011 – Signals and <u>Control</u>

MATLAB practical 2 – Poles and Stability

12 December, 2022

Learning objective

By the end of this MATLAB session you should be able to:

- Understand and derive the characteristics of electric circuit components: resistor *R*, capacitor *C*, inductor *L*
- Solve linear dynamic equations using the Laplace transform
- Determine how the system's dynamics depend on the poles of the transfer function
- Explain how the system components affect the poles in the *s*-plane

Poles and Stability – Recap

For a LTI system $G(s) = \frac{N(s)}{D(s)}$ Poles, p_i are the solution of D(s) = 0

Three types of stability

- Asymptotic stability: $Re(p_i) < 0$
- Instability:
 - $Re(p_i) > 0$
- Marginal stability: $Re(p_i) = 0$

Task 2 - RLC circuit

Different values of *R*, *L* and *C* result in different poles in the *s*-plane and influence the systems dynamics

Task 2-Step responses and poles in the s-plane

Task 3 - Closed-loop control of the wheel system

$$G(s) = \frac{10^5}{5s^3 + 5001s^2 + 2000s + 10^5K}$$

final value theorem
$$\lim_{s \to 0} s \frac{1}{s} G(s) = \frac{1}{K}$$

When K = 1

- all poles have a <u>negative real</u> part
- the step response converges to $\frac{1}{K} = 1$

Task 3 - Step response and poles for varied K

Step response and stability

> K < 20:asymptotically stable

- Dominant poles have negative real parts
- Oscillation, converging to 1/K

> K = 20: Marginal stable

- Real part of the dominant poles is 0
- Undamped oscillation

> K > 20: unstable

- Dominant poles have positive real parts
- Oscillation with an increasing amplitude

Task 3 - root locus

$$G(s) = \frac{10^5}{5s^3 + 5001s^2 + 2000s + 10^5K}$$

- A *root locus* plot is a graphical representation of the **poles' trajectory** in the complex plane with respect to the **variation of the feedback** <u>gain</u> (*K*).
- Poles are labelled by x, zeros by o (if there is any)
- If we add poles with the variation of K on root locus plot, poles will overlay on the root locus trajectories!

Trajectory 2: locations of the second dominant pole with a varying *K*

Task 4 – Performance of an approximated system

(1) Poles of the fan system

$$G_{\omega}(s) = \frac{10^5}{5s^2 + 5001s + 2000}$$

Poles
$$p_{1,2} = \frac{-5001 \pm \sqrt{5001^2 - 4 \cdot 5 \cdot 2000}}{2 \cdot 5} \Rightarrow p_1 = -0.4 \text{ and } p_2 = -999.8$$

negative real poles → stable!

(2) DC gain of the fan system $G_{\omega}(s)$ $\alpha = \lim_{s \to 0} s\left(\frac{1}{s}G_{\omega}(s)\right) = \lim_{s \to 0} \frac{10^5}{5s^2 + 5001s + 2000} = 50$

The angular velocity of the fan will converge to 50 with the unit step input!

Task 4 – Performance of an approximated system

(3)-(4) Dominant pole approximation

Dominant pole $p = 0.4 \Rightarrow$ the approximated system (derived in SG 1)

$$\widehat{G_{\omega}}(s) = \frac{K}{s+0.4}$$

Step response via finite value theorem: $\widehat{\omega}(t) = 50(u(t) - e^{-0.4t})$

As $t \to \infty$, the step response of the system converges to 50 rad/s.

- The fan will converge to a fixed wheel angular speed after a period time.
- We can control the angular speed of the fan!

The dominant pole is far away from another pole

[➔] good approximation!

Task 4 – Performance of an approximated system

Can we control the wheel angle of a **prize wheel**?

- (5) Perform the same analysis to the approximated **prize wheel** system:
 - The step response does NOT converge.
 - As $t \to \infty$, the wheel angle tends to infinite large.
 - Therefore, the angle of the prize wheel cannot be controlled by a step input.

