

BIOE50011 – Signals and *Control*

MATLAB practical 4 – Bode plots

Learning objective

By the end of this MATLAB session you should be able to:

- Draw Bode plots for LTI systems.
- Recognize typical Bode plots for 1st and 2nd order systems.
- Identify transfer function from Bode plots.
- Compute and interpret gain and phase margins.

Task 2 - Bode plots of 1st order factor

 $G(s) = (s\tau + 1)^{\alpha}$

 $\alpha = 0, \tau [0.001, 0.01, 0.1, 1, 10]$

The **cut-off frequency**, $\omega_c = 1/\tau$, is inversely proportional to τ . ω_c decreases as τ increases. Magnitude $\approx 20 \log(1) = 0$ for $\omega \ll 1/\tau$ and $\approx 20 \log(1) + 20 \log(\omega \tau)$ $= 20 \log(\omega \tau)$ for $\omega \gg 0$

Task 2 - Bode plots of 1st order factor

 $G(s) = (s\tau + 1)^{\alpha}$ $\tau = 10$ with $\alpha \in [1, 2, 3, 4, 5]$

The corner frequency, ω_c , is fixed and independent of the value of α .

As α increases

the slope of the magnitude plot increases **magnitude** $= 20 \log |j\omega\tau + 1|^{\alpha} \approx \alpha \cdot 20 \log \omega\tau$

the asymptote of the phase plot increases $phase = \angle (j\omega\tau + 1)^{\alpha} = \alpha \angle (j\omega\tau + 1)$ $\approx \alpha \cdot 90^{\circ}$

Task 2 - Bode plots of 2nd order systems

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Undamped natural frequency $\omega_n = 1$ Damping ratio $\zeta \in [0, 1, 1, 5, 100]$

The x-axis is normalized frequency

 $r = \omega / \omega_n$

• $\zeta = 0.1$ creates an overshoot at the resonant frequency:

 $\omega_r = \omega_n \sqrt{1 - 2\zeta^2} \approx 0.99 \text{ rad/s}$

• As ζ increases, a more gradual change in phase is observed around the corner frequency.

Task 2 - Bode plots of 2nd order systems

Damping ratio $\zeta = 1$

Undamped natural frequency

 $\omega_n \in [0.1, 1, 5, 100]$

- The x-axis is normalized frequency $r = \omega/\omega_n$
- As ω_n increases,

the corner frequency increases

Task 3 - Bode plots of a product of basic factors

$$G_1(s) = 0.1s + 1$$

$$G_2(s) = (s + 1)^{-2}$$

$$G(s) = G_1(s)G_2(s) = \frac{0.1s + 1}{(s + 1)^2}$$

Bode plots are additive!

- A factor with a <u>positive power</u> makes the magnitude and phase **increase**.
- A factor with a <u>negative power</u> makes the magnitude and phase **decrease**.

Task 4 – Stability margins

The closed-loop system of interest:

Bode plots of the systems:

Task 4 – Stability margins

The phase margins of the system decrease as *K* increases.

K	РМ	ω_g (rad/s)
1	52.6	786
10	18.2	3084
50	8.2	7036
100	5.8	9975

The gain margin is infinity (Inf), regardless of the value of *K*.

Task 4 – Stability margins

- Gain and phase margins measure the tolerance of a system to variations, i.e. how stable the system is.
- These quantities are determined by the open-loop transfer functions.