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Preface

These notes were partially built and compiled in Autumn 2020, during the outburst of COVID-19 in
the UK and China. Although the teaching was conducted in a remote fashion and the class was barely
able to meet each other in person, Prof. Darryl Overby managed to deliver this module, Bioengineer-
ing Science 21, without any compromise to the quality.

My procrastination impeded me from completing the writing and typesetting work until two years
later, when I handed in my master’s thesis and delivered my project presentation to the department. A
long time from the hiatus, I guess a quick refresh to those classic thermo-fluids concepts would indeed
be a good summer choice, given that my PhD work will be featuring bio-fluid mechanics.

The topics, convective heat transfer, boundary layers, and mass transport, were first built over the
summer and appended to my previous work. Besides, figures in the notes were reproduced in the
format of .eps hence the old, blocky ones could be replaced.

This module is now taught by Dr. S. Au and Dr. C. H. Yap, with slight revisions to the syllabus.
These changes are mainly reflected in the last two chapters, where additional examples of exter-
nal/internal flow are given, and derivations on the thermal/velocity boundary layers are removed. Yet,
these changes have not been considered here. I will update them once those materials are accessible.
Let us stay tuned.

Special thanks to G. Guo for his precious and continuous input in the notes, which motivated me to
make corrections to the probed typos.

 The LATEX files are now accessible on my GitHub repository. I hope this helps. Please report typos
and inconsistencies to binghuan.li19@imperial.ac.uk.

To my undergraduate years.

September, 2023 & May, 2024
Rizhao, Shandong, China

& London, UK

1a.k.a. Heat and Mass Transport II

https://github.com/binghuan-li/Notes-and-Formula-Sheets
mailto:binghuan.li19@imperial.ac.uk
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1 Units and Energy

1.1 Dimensions and Units
Heat transport quantities are specified in terms of dimensions, and measured in terms of units.

Units Numbers are physical quantities with physical meanings and dimensions. All dimensional
variables and parameters are assigned units. Variables and parameters without units are physically
meaningless.

5 basic units used to describe all physical quantities

Quantity Symbol Unit Quantity Symbol Unit

Length 𝐿 m Mass 𝑀 kg
Time 𝑇 s Temperature 𝑇 K
Charge 𝐶 C

1.2 Unit Conventions
Factor-Label Method

• Express conversion factors as unity fractions, representing the ratio of the same physical quan-
tity expressed in two different units. For example:

760 mmHg

1 atm
or

101.3 × 103 Pa

1 atm

• Unity fractions are multiplied together

• Similar units in the numerator and denominator cancel, to give desired units. For example:

• Exception: this does not work for temperature 𝑇Kelvin = 𝑇Celsius + 273.15

Always check units!

1.3 Laws of Thermodynamics
0th Law “If body A is in thermal equilibrium with body B, and B with C, then A is in thermal
equilibrium with C.”

1st Law “The energy of an isolated system is constant.”

2nd Law “When two systems are brought into thermal contact, heat flows spontaneously from the
one at higher temperature to the one at lower temperature, not the other way around.”



Bioengineering Science 2 (Heat and Mass Transport) 5

1.4 First Law of Thermodynamics
Energy cannot be created nor destroyed, but only change forms.

d𝑢 = 𝛿𝑄 − 𝛿𝑊 [Joules, J]

- 𝑢: the total energy of a system (is a state variable, hence a true differential ‘d’)

- 𝑄: heat flowing into the system (positive b.c U increases by heat inflow)

- 𝑊 : work done by the system (negative b.c U decreases by doing work)

Express the 1𝑠𝑡 law in terms of rates of change:

d𝑈

d𝑡
=
𝜕𝑄

𝜕𝑡
− 𝜕𝑊

𝜕𝑡
= ¤𝑄 − ¤𝑊 [Watts, W]

- ¤𝑄: rate of heat flow into system

- ¤𝑊 : rate of work done by system

1.5 Two Types of Heat Transport Systems
1. Adiabatic: If the system is adiabatic, there is no heat transport (𝛿𝑄 = 0) and the system is

thermally insulated from its surroundings.

𝑑𝑈 = −𝛿𝑊

2. Isometric: If the system is isometric, there is no change in dimensions and therefore no work
done (𝛿𝑊 = 0). The system is mechanically insulated from its surroundings.

𝑑𝑈 = 𝛿𝑄

1.6 Forms of energy
• Kinetic energy – associated with a macroscopic mass in motion: 1

2
𝑚𝑣2

• Potential energy – associated with the position of an object in a gravitational or electromagnetic
field: 𝑚𝑔𝑧

• Elastic strain energy – energy stored within elastic deformation. e.g., spring of stiffness k and
deformation x: 1

2
𝑘𝑥2

• Thermal or “internal” energy – energy associated with the motion of molecules (translation,
rotation, vibration): 𝑚𝑐𝑝𝑇

• Many more forms of energy: chemical bond energy, nuclear energy, ...
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2 Three Modes of Heat Transport

T1 
> T2T1 T2

q"
q"

Conduction through a solid 

or a stationary fluid
Convection from a surface 

to a moving fluid
Net radiation heat exchange 

between two surfaces

Surface, T1

Surface, T2

Ts > T
∞

Ts

q"1

q"2

Moving fluid, T
∞

Figure 1: Conduction, convection, and radiation heat transfer modes

2.1 Conduction
• Heat Transport between molecules via random collisions.

xo

x

T

T
2

T
1
 > T

2

q"x q"x

Figure 2: Association of conduction heat transfer with diffusion of energy due to molecular activity.

Consider conduction within a gas under a temperature gradient where no bulk motion occurs.
The energy is transferred from the high-energy molecules to the low-energy molecules by col-
lision.

• In 1-D, heat conduction is governed by Fourier’s Law:

¤𝑄 = −𝑘 𝐴 d𝑇

d𝑥

- 𝑘: thermal conductivity [W/(m · K)]: an intrinsic property of material - how good the
material is to conduct heat?

- 𝐴: surface area [m2]
- d𝑇

d𝑥
: temperature gradient in 𝑥-direction [K/m]
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2.2 Convection
• Heat transport due to bulk motion over a heated surface. It occurs at an interface between a
fluid in motion and a bounding surface when the two are at different temperatures.

y

u(y) T(y)

x

Ts

Heated

surface

u
∞

y
T

∞

Temperature

distribution

T(y)

Velocity

distribution

u(y) q"

Fluid

Figure 3: Boundary layer development in convection heat transfer.

• Convective heat flux is described by Newton’s law of cooling:

¤𝑄 = ℎ 𝐴 (𝑇𝑠 − 𝑇∞)

- ℎ: convective heat transport coefficient [W/(m2 · K)]

* highly sensitive to flow patterns, geometry, transport properties

* difficult to compute, but some analytical and tabulated values exist

• Two types of convective heat transport:

– Forced convection: fluid motion is determined by the external source.
– Free Convection: fluid motion is determined by temperature differences and buoyancy
forces.

Hot components
on printed

circuit boards

Air

Air

Forced
flow

Buoyancy-driven
flow

q''

q''

b)((a)

Figure 4: (a) Forced convection, (b) Free convection

– Mixed convection: convection influenced by both the external source and buoyancy
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2.3 Radiation
• In radiation, heat transport is due to the propagation of electromagnetic waves (photons). It
occurs at any finite temperature for solid, liquid or gas, and does not require physical contact or
material medium (efficient in vacuum).

• Black body radiation, 𝐸𝑏, is described by Stefan-Boltzmann law:

𝐸𝑏 = 𝜎 𝑇
4

where 𝜎 is the Stefan-Boltzmann constant with its value 5.67 × 10−8 [W/(m2K4)]

• However, real materials are not ideal black bodies:

𝐸 = 𝜖 𝜎 𝑇4

where 𝜖 is the emissivity with its value 0 ≤ 𝜖 ≤ 1

• Radiation also incident on the surface from surroundings (irradiation or 𝐺). But only a portion
of 𝐺 is absorbed, the rest is reflected or transmitted. This can be described by

𝐺𝑎𝑏𝑠 = 𝛼 𝐺

where 𝛼 is absorptivity with its value 0 ≤ 𝛼 ≤ 1
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3 Reynolds Transport Theorem

3.1 Conservation Laws
d𝑈︸︷︷︸

À

= 𝛿𝑄︸︷︷︸
Á

− 𝛿𝑊︸︷︷︸
Â

+ d𝑆︸︷︷︸
Ã

À Increase in energy Á Amount of inflow
Â Amount of outflow Ã Amount of generation

Written in terms of rate of change:

d𝑈

d𝑡
=
𝜕𝑄

𝜕𝑡
− 𝜕𝑊

𝜕𝑡
+ 𝜕𝑆
𝜕𝑡

= ¤𝑄 − ¤𝑊 + ¤𝑆

3.2 Control Volume
Control Volume (CV) is a defined region of space where a conservation law is applied.

- can be any shape and size - chosen based on convenience;

- must be used consistently throughout the problem;

3.3 Kinematics Description and Material Derivative
Kinematics Description of motion of mass in time and space, noting about forces driving that mo-
tion.

Two general approaches used in kinematics are Lagrangian and Eulerian.

Figure 5: Eulerian and Lagrangian descriptions of the kinematics.

Lagrangian Eulerian

• keeps track of individual particles as they
move through space

• often called the “material-following” ap-
proach

• Difficult in practice

• describes particle velocity as a function of
space

• Convenient in mathematical approach,
but leads to some paradoxes
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Material Derivative The material derivative (or, total derivative) links the Eulerian and Lagrangian
reference frames. For a certain quantity 𝑔, the material derivative of 𝑔 is

𝐷𝑔

𝐷𝑡
=
𝜕𝑔

𝜕𝑡
+ (®𝒗 · ∇)𝑔

Derivation

Let 𝑔( ®𝒙, 𝑡) = 𝑔(𝑥, 𝑦, 𝑧, 𝑡) be an arbitrary property of a mass particle defined in an Eulerian field.
As the particle moves through the field, the property assumes the local value of 𝑔( ®𝒙, 𝑡). What
is the rate of change of 𝑔( ®𝒙, 𝑡)?

𝐷𝑔

𝐷𝑡
=

d

d𝑡
𝑔(

®𝒙(𝑡 )︷             ︸︸             ︷
𝑋 (𝑡), 𝑌 (𝑡), 𝑍 (𝑡), 𝑡)

=
𝜕𝑔

𝜕𝑥�
�
��7
𝑣𝑥

d𝑋

d𝑡
+ 𝜕𝑔
𝜕𝑦 �

�
���
𝑣𝑦

d𝑌

d𝑡
+ 𝜕𝑔
𝜕𝑧�

�
��7
𝑣𝑧

d𝑍

d𝑡
+ 𝜕𝑔
𝜕𝑡

= 𝑣𝑥
𝜕𝑔

𝜕𝑥
+ 𝑣𝑦

𝜕𝑔

𝜕𝑦
+ 𝑣𝑧

𝜕𝑔

𝜕𝑧
+ 𝜕𝑔
𝜕𝑡

=
𝜕𝑔

𝜕𝑡︸︷︷︸
unsteady

+ (®𝒗 · ∇)𝑔︸   ︷︷   ︸
advection

where the vector ®𝒗 ∈ [𝑣𝑥, 𝑣𝑦, 𝑣𝑧].

3.4 Flow and Flux
3.4.1 Flow

Flow Flow quantifies how much of a substance or property is being transported across a surface per
unit of time. Flow is an extensive property.

Typical Units of Flows

• flux of solute: M/s

• flux of heat: J/s = W

• flux of solvent: m3/s

Extensive Property is a physical property that depends on the size or the amount of material con-
tained in system. It cannot be defined at a point.

• Examples: mass, energy, momentum

3.4.2 Flux

Flux Flux quantifies how much of a substance or property is being transported across a surface per
unit of time and per unit area. Flux is an intensive property.
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Typical Units of Fluxes

• flux of solute: M/(m2s)

• flux of heat: J/(m2s) = W/(m2)

• flux of solvent: m3/(m2s) = m/s

Intensive Property is independent of size or the amount of material contained in the system. It
cannot be defined at each point (per unit volume, unit area, unit mass);

• Examples: density, concentration.

Integrating an intensive property over space containing mass translates an intensive property into an
extensive property.

3.4.3 Flux Orientation and Volume Flow Rate

Flow across a surface depends on the relative orientation between flux and surface.

Mathematically, the intensive volume flow rate is

d𝑉 = (®𝒗 · 𝒏) d𝐴 d𝑡 or
d𝑉

d𝑡
= (®𝒗 · 𝒏) d𝐴

where

- 𝒏 represents the outward facing normal or a control surface: 𝒏 = 𝑛𝑥𝑒𝑥 + 𝑛𝑦𝑒𝑦 + 𝑛𝑧𝑒𝑧.

- ®𝒗 represents the velocity of flux crossing the surface: ®𝒗 = 𝑣𝑥𝑒𝑥 + 𝑣𝑦𝑒𝑦 + 𝑣𝑧𝑒𝑧.

Extensive flow rate:
𝑄 =

∫
𝐴

(®𝒗 · 𝒏) d𝐴

Generalize to any arbitrary extensive property 𝐵, where 𝛽 = d𝐵

d𝑚
(see examples after the derivation in

subsection 3.5), total rate of transport of 𝐵 across surface area 𝐴 due to fluid flow is:

𝑄 =
∫

𝐴

𝜌𝛽(®𝒗 · 𝒏) d𝐴
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3.5 Reynolds Transport Theorem (RTT)
For a conserved physical quantity 𝐵, RTT is mathematically expressed as

d𝐵system

d𝑡
=
𝜕

𝜕𝑡

∫
𝐶𝑉

𝜌𝛽d𝑉 +
∮
𝐶𝑆

𝜌𝛽(®𝒗 · 𝒏)d𝐴. (3.5.1)

In other words,(
Rate of change of
𝐵 in the system

)
=

(Rate of change of
𝐵 in control
volume

)
+

(Net flux of 𝐵 out
of control volume

)
.

Derivation of RTT

- I entire fluid system within CV at time 𝑡

- II new fluid that has entered CV at time 𝑡 + Δ𝑡

- III portion of fluid system that remains inside CV at time 𝑡 + Δ𝑡

- IV portion of fluid system that is outside of CV at time 𝑡 + Δ𝑡

By conservation of mass: “how much out equals to how much in”

𝐵system |𝑡+Δ𝑡 − 𝐵system |𝑡︸                     ︷︷                     ︸
change of B in system

= 𝐵𝐼 𝐼 𝐼 + 𝐵𝐼𝑉 − 𝐵𝐼

= (𝐵𝐼 𝐼 𝐼 + 𝐵𝐼 𝐼 − 𝐵𝐼)︸               ︷︷               ︸
change of B in CV

+ (𝐵𝐼𝑉 − 𝐵𝐼 𝐼)︸        ︷︷        ︸
Net amount of B

leaving CV due to flow

𝐵system |𝑡+Δ𝑡 − 𝐵system︸                   ︷︷                   ︸
Term A

= 𝐵𝐶𝑉 |𝑡+Δ𝑡 − 𝐵𝐶𝑉 |𝑡︸              ︷︷              ︸
Term B

+ Net amount of 𝐵 leaving CV due to flow︸                                                ︷︷                                                ︸
Term C

Divide each term by Δ𝑡, and take limit as Δ𝑡 → 0

Term A: rate of change of 𝐵 within system (Lagrangian)

lim
Δ𝑡→0

𝐵system |𝑡+Δ𝑡 − 𝐵system |𝑡
Δ𝑡

=
d𝐵system

d𝑡
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Term B: rate of change of 𝐵 within CV (Eulerian)

lim
Δ𝑡→0

𝐵𝐶𝑉 |𝑡+Δ𝑡 − 𝐵𝐶𝑉 |𝑡
Δ𝑡

=
𝜕𝐵𝐶𝑉

𝜕𝑡
=
𝜕

𝜕𝑡

∫
𝐶𝑉

𝜌𝛽d𝑉

Term C: rate of change of 𝐵 within CV as it is lost by fluid flow (Eulerian)

lim
Δ𝑡→0

Net amount of 𝐵 leaving CV due to flow
Δ𝑡

= rate of 𝐵 leaving CV due to flow

=
∮
𝐶𝑆

𝜌𝛽(®𝒗 · 𝒏)d𝐴

To equate these three terms,

Term A = Term B + Term C ⇒ d𝐵system

d𝑡
=
𝜕

𝜕𝑡

∫
𝐶𝑉

𝜌𝛽d𝑉 +
∮
𝐶𝑆

𝜌𝛽(®𝒗 · 𝒏)d𝐴

which states the RTT expressed in Equation 3.5.1.

What is the quantity 𝛽 in RTT? 𝛽 denotes the amount of 𝐵 per unit mass, i.e., 𝛽 = d𝐵/d𝑚.
Examples to follow:

• If 𝐵 denotes mass 𝑚: 𝛽 =
d𝑚

d𝑚
= 1;

• If 𝐵 denotes volume 𝑉 : 𝛽 =
d𝑉

d𝑚
= 1/𝜌;

• If 𝐵 denotes linear momentum ®𝑷 = 𝑚®𝒗: 𝛽 =
d ®𝑷
d𝑚

= ®𝒗;

• If 𝐵 denotes angular momentum ®𝑳 = ®𝒓 × ®𝑷 = 𝑚®𝒓 × ®𝒗: 𝛽 =
d ®𝑳
d𝑚

= ®𝒓 × ®𝒗.
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4 Heat Equation

4.1 Integral Form of Heat Equation
When 𝐵 → 𝑈, 𝛽 → 𝑈𝑀 , RTT can be expressed as

d𝑈system

d𝑡
=
𝜕

𝜕𝑡

∫
𝐶𝑉

𝜌𝑈𝑀 d𝑉 +
∮
𝐶𝑆

𝜌𝑈𝑀 (®𝒗 · 𝒏) d𝐴

The rate of change of the system, d𝑈system

d𝑡
can be further expand with the expression ¤𝑄 − ¤𝑊 + ¤𝑆,

¤𝑄 − ¤𝑊 + ¤𝑆 =
𝜕

𝜕𝑡

∫
𝐶𝑉

𝜌𝑈𝑀 d𝑉 +
∮
𝐶𝑆

𝜌𝑈𝑀 (®𝒗 · 𝒏) d𝐴

By applying the following constraints and rearranging the expressions,

1. Only the thermal energy is considered: 𝜌𝑈𝑀 = 𝜌𝑐𝑝𝑇 , where 𝑐𝑝 is specific heat at constant
pressure [J/kg K],

¤𝑄 − ¤𝑊 + ¤𝑆 =
𝜕

𝜕𝑡

∫
𝐶𝑉

𝜌𝑐𝑝𝑇 d𝑉 +
∮
𝐶𝑆

𝜌𝑐𝑝𝑇 (®𝒗 · 𝒏) d𝐴

2. - ¤𝑄 is the rate of heat transport into CV through CS: ¤𝑄 = −
∮
𝐶𝑆

( ®𝒒 · 𝒏)d𝐴, where ®𝒒 is the

heat flux vector;
- neglect contributions of work terms: ¤𝑊 = 0;

- heat generation per unit volume: ¤𝑆𝑣 : ¤𝑆 =
∫
𝐶𝑉

¤𝑆𝑣d𝑉 .

−
∮
𝐶𝑆

( ®𝒒 · 𝒏)d𝐴 + ¤𝑆𝑣 =
𝜕

𝜕𝑡

∫
𝐶𝑉

𝜌𝑐𝑝𝑇 d𝑉 +
∮
𝐶𝑆

𝜌𝑐𝑝𝑇 (®𝒗 · ®𝒒) d𝐴

Re-arrange the above expression, this gives us the final expression of conservation of mass.

𝜕

𝜕𝑡

∫
𝐶𝑉

𝜌𝑐𝑝d𝑉︸          ︷︷          ︸
rate of change

of thermal energy

=
∫
𝐶𝑉

¤𝑆𝑣d𝑉︸    ︷︷    ︸
rate of heat generation

−
∮
𝐶𝑆

( ®𝒒 · 𝒏)d𝐴︸         ︷︷         ︸
rate of heat loss
due to heat flux

−
∮
𝐶𝑆

𝜌𝑐𝑝𝑇 (®𝒗 · 𝒏)d𝐴︸                 ︷︷                 ︸
rate of heat loss

by fluid flow across CS

(4.1.1)

4.2 An Example
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Example: Cooling of a Circuit Board

Problem Description An integrated circuit chip generates heat during operation at a constant
rate ¤𝑆𝑣 in units of𝑊/𝑚3. Forced convection from a fan is used to cool the chip during operation.
The temperature of air from the fan is 𝑇∞, with convective heat transport ℎ. The surface area of
the chip is 𝐴. The chip is insulated on all sides except the top. The thickness of the chip is 𝑤.
Assume that the IC chip has uniform internal temperature.

Aim Find an expression for the steady-state temperature, 𝑇𝑠, of the IC chip.

Solution Procedure Start from the heat equation:

��������*
0, steady-state

𝜕

𝜕𝑡

∫
𝐶𝑉

𝜌𝑐𝑝𝑇d𝑉 =
∫
𝐶𝑉

¤𝑆𝑣d𝑉 −
∮
𝐶𝑆

( ®𝒒 · 𝒏)d𝐴 −
����������:0, no advection∮
𝐶𝑆

𝜌𝑐𝑝𝑇 (®𝒗 · 𝒏)d𝐴

which is eliminated to ∫
𝐶𝑉

¤𝑆𝑣d𝑉︸    ︷︷    ︸
= ¤𝑆𝑣𝑉= ¤𝑆𝑣𝑤𝐴

=
∮
𝐶𝑆

( ®𝒒 · 𝒏)d𝐴︸         ︷︷         ︸
=𝑞ℎ𝐴=ℎ (𝑇𝑠−𝑇∞)𝐴

Therefore, to equate L.H.S and R.H.S.,

¤𝑆𝑣𝑤𝐴 = ℎ(𝑇𝑠 − 𝑇∞)𝐴 ⇒ 𝑇𝑠 =
¤𝑆𝑣𝑤

ℎ
+ 𝑇∞

Checking units: [K] (L.H.S.) =
[
W

m3
· m

W/K ·m2

]
= [K] (R.H.S.) ⇒ ✓

4.3 Differential Form of Heat Equation
4.3.1 Divergence Theorem

• TheDivergence Theorem (Gauss’ Theorem) states that the net quantity of any vector leaving
a volume is equal to net flow of that vector across the surface bounding that volume.∮

𝐶𝑆

( ®𝒇 · 𝒏) d𝐴 =
∫
𝐶𝑉

(∇ · ®𝒇 ) d𝑉

• The divergence theorem transforms a surface integral into a volume integral.
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- ®𝒇 can be any arbitrary vector

- ∇· is the divergence operator, where ∇ · ®𝒇 =
𝜕 𝑓𝑥
𝜕𝑥

+
𝜕 𝑓𝑦

𝜕𝑦
+ 𝜕 𝑓𝑧
𝜕𝑧

4.3.2 Differential Form of Heat Equation

𝜌𝑐𝑝

(
𝜕𝑇

𝜕𝑡︸︷︷︸
À

+ (®𝒗 · ∇)𝑇︸   ︷︷   ︸
Á

)
= ¤𝑆𝑣︸︷︷︸

Â

+ 𝑘∇2𝑇︸︷︷︸
Ã

À unsteady term Á convective term
Â source term Ã diffusive term

Derivation

Apply the divergence theorem to the heat equation:∮
𝐶𝑆

( ®𝒒 · 𝒏)d𝐴 =
∫
𝐶𝑉

(∇ · ®𝒒)d𝑉

∮
𝐶𝑆

𝜌𝑐𝑝𝑇 (®𝒗 · 𝒏)d𝐴 =
∫
𝐶𝑉

(∇ · (𝜌𝑐𝑝𝑇 ®𝒗))d𝑉

Therefore,

𝜕

𝜕𝑡

∫
𝐶𝑉

𝜌𝑐𝑝𝑇d𝑉 =
∫
𝐶𝑉

¤𝑆𝑣d𝑉 −
∮
𝐶𝑆

( ®𝒒 · 𝒏)d𝐴 −
∮
𝐶𝑆

𝜌𝑐𝑝𝑇 (®𝒗 · 𝒏)d𝐴

=
∫
𝐶𝑉

¤𝑆𝑣d𝑉 −
∫
𝐶𝑉

(∇ · ®𝒒)d𝑉 −
∫
𝐶𝑉

(∇ · (𝜌𝑐𝑝𝑇 ®𝒗))d𝑉

Rearrange: ∫ [
𝜕

𝜕𝑡
𝜌𝑐𝑝𝑇 − ¤𝑆𝑣 + (∇ · ®𝒒) + (∇ · (𝜌𝑐𝑝𝑇 ®𝒗))

]
︸                                                 ︷︷                                                 ︸

0

d𝑉 = 0

Since:

• 𝜕

𝜕𝑡
(𝜌𝑐𝑝𝑇) = 𝜌 𝜕(𝑐𝑝𝑇 )

𝜕𝑡
+ 𝑐𝑝𝑇

𝜕𝜌

𝜕𝑡

• ∇ · (𝜌𝑐𝑝𝑇 ®𝒗) = 𝑐𝑝𝑇 (∇ · 𝜌®𝒗) + 𝜌(®𝒗 ∇ · 𝑐𝑝𝑇)

Thus,

𝜌
𝜕 (𝑐𝑝𝑇)
𝜕𝑡

+ 𝑐𝑝𝑇
𝜕𝜌

𝜕𝑡
= ¤𝑆𝑣 − (∇ · ®𝒒) − 𝑐𝑝𝑇 (∇ · 𝜌®𝒗) − 𝜌(®𝒗 ∇ · 𝑐𝑝𝑇)

Rearrange: assume 𝑐𝑝 is constant and uniform

����������:0
𝑐𝑝𝑇

(
𝜕𝜌

𝜕𝑡
+ ∇ · 𝜌®𝒗

)
+ 𝜌𝑐𝑝

(
𝜕𝑇

𝜕𝑡
+ (®𝒗 · ∇)𝑇

)
= ¤𝑆𝑣 − (∇ · ®𝒒)

Since ∇ · ®𝒒 = −𝑘∇2𝑇 .

Result
𝜌𝑐𝑝

(
𝜕𝑇

𝜕𝑡
+ (®𝒗 · ∇)𝑇

)
= ¤𝑆𝑣 + 𝑘∇2𝑇
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Alternatively
𝜌𝑐𝑝

𝐷𝑇

𝐷𝑡︸   ︷︷   ︸
À

= ¤𝑆𝑣︸︷︷︸
Á

+ 𝑘∇2𝑇︸︷︷︸
Â

À Rate of change of heat in fluid particle
Á Rate of heat generation
Â Rate of heat accumulation by conduction

4.3.3 Special Cases of the Differential Form of Heat Equation

No heat generation ( ¤𝑆𝑣 = 0)
𝜕𝑇

𝜕𝑡
+ (®𝒗 · ∇)𝑇 = 𝛼∇2𝑇

where 𝑘 → 𝛼 =
𝑘

𝜌𝑐𝑝

is the thermal diffusivity, with the unit m2/s.

No advection (®𝒗 = 0)
𝜕𝑇

𝜕𝑡
= 𝛼∇2𝑇 +

¤𝑆𝑣

𝜌𝑐𝑝

Steady-state ( 𝜕𝑇
𝜕𝑡

= 0)

(®𝒗 · ∇)𝑇 = 𝛼∇2𝑇 +
¤𝑆𝑣

𝜌𝑐𝑝

4.4 Similarity

Transport of ... Governing Equation “Diffusivity” Source Term

Heat
𝜕𝑇

𝜕𝑡
+ (®𝒗 · ∇)𝑇 = 𝛼∇2𝑇 + ¤𝑆𝑇 𝛼 = 𝑘/𝜌𝑐𝑝

¤𝑆𝑇 = ¤𝑆𝑣/𝜌𝑐𝑝

Mass
𝜕𝐶

𝜕𝑡
+ (®𝒗 · ∇)𝐶 = D∇2𝐶 + 𝑆𝐶 D 𝑆𝐶

Momentum (N-S)
𝜕®𝒗
𝜕𝑡

+ (®𝒗 · ∇)®𝒗 = 𝜈∇2®𝒗 + ¤𝑆𝑣 𝜈 = 𝜇/𝜌 ¤𝑆𝑣 = (−∇𝑝 + 𝜌𝒈)/𝜌
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5 Steady-State Heat Conduction

5.1 Boundary Conditions
The 1-D heat equation is second-order in spatial coordinates (𝑥) and first-order in time (𝑡), so two
boundary conditions and one initial condition are needed.

Dirichlet Condition Neumann Condition Newton’s Law of Cooling

fixed temperature fixed slope couples temperature and slope

T(x, t)

x

T
s

x

qs''

T(x, t) T
∞
, h

x
T(x, t)

T(0, t)

Table 1: Three types of boundary conditions: Dirichlet, Neumann, Newton’s Law of Cooling

5.2 Example 1: 1-D Steady-State Conduction in a Wall

Example: 1-D Steady-State Conduction

Assumptions
• 1-D steady-state conduction⇒ 𝜕/𝜕𝑡 = 0;

• no external heat generation⇒ ¤𝑆𝑣 = 0;

• No convection is considered⇒ (®𝒗 · ∇)𝑇 = 0;

• constant conductivity 𝑘 .

Goal Solve for 𝑇 (𝑥) in wall.

Solution Procedure Start from the heat equation:

𝜌𝑐𝑝

(
�
�
��7
0

𝜕𝑇

𝜕𝑡
+�����:0
(®𝒗 · ∇)𝑇

)
= �

�7
0

¤𝑆𝑣 + 𝑘∇2𝑇

Rearrange,
d2𝑇

d𝑥2
= 0 ⇒ 𝑇 = 𝐶1𝑥 + 𝐶2

Impose the Dirichlet boundary conditions for constants 𝐶1 and 𝐶2:

• 𝑥 = 0, 𝑇 = 𝑇𝑠,0 ⇒ 𝐶2 = 𝑇𝑠,0

• 𝑥 = 𝐿, 𝑇 = 𝑇𝑠,𝐿 ⇒ 𝐶1 =
𝑇𝑠,𝐿 − 𝑇𝑠,0

𝐿

Therefore,
𝑇 (𝑥) = 𝑇𝑠,𝐿 − 𝑇𝑠,0

𝐿
𝑥 + 𝑇𝑠,0

which has a linear profile, decreasing from 𝑇𝑠,0 to 𝑇𝑠,𝐿 from 𝑥 = 0 to 𝑥 = 𝐿.
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The flux,
𝑞 =

𝑘

𝐿
Δ𝑇 =

𝑘

𝐿
(𝑇𝑠,0 − 𝑇𝑠,𝐿)

which is a constant.

5.2.1 Thermal Resistance

The linear temperature profile from the above example allows us to use the concept of resistance to
construct an equivalent “thermal circuit”.

Thermal Resistance Analogous to the electrical resistance,

current flow 𝐼[A] heat flux ¤𝑄[W]

𝐼 =
1

𝑅
Δ𝑉 ¤𝑄 =

𝑘𝐴

𝐿
Δ𝑇

𝑉1 𝑅

Δ𝑉

𝑉2 𝑇1
𝐿

𝑘𝐴

Δ𝑇

𝑇2

the thermal resistance of heat conduction, 𝑅𝑇,𝑐𝑜𝑛𝑑 =
𝐿

𝑘𝐴

[
K

W

]
, impedes the process of conduction.

• For other modes of heat transport in a plane wall, the thermal resistances are

Conduction, 𝑅𝑇,𝑐𝑜𝑛𝑑 Convection, 𝑅𝑇,𝑐𝑜𝑛𝑣 Radiation, 𝑅𝑇,𝑟𝑎𝑑

𝐿

𝑘𝐴

𝐿

ℎ𝐴

𝐿

ℎ𝑟𝐴

• For different geometries, the thermal resistances for conduction are
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Geometry Thermal Resistance, 𝑅𝑇,𝑐𝑜𝑛𝑑

plane wall
𝐿

𝑘𝐴

cylindrical wall
ln(𝑟2/𝑟1)
2𝜋𝐿𝐴

spherical wall
1

4𝜋𝑘
( 1
𝑟1

− 1

𝑟2
)

Contact Resistance Conduction across the true contact area. Convection/radiation across gaps.

5.3 Example 2: Steady-State Conduction in a Cylinder

Example: Conduction Through a Cylinder

Assumptions
• 1-D steady-state conduction⇒ 𝜕/𝜕𝑡 = 0;

• no external heat generation⇒ ¤𝑆𝑣 = 0;

• no convection is considered⇒ (®𝒗 · ∇)𝑇 = 0;

• constant 𝑘 .

Aim Solve for 𝑇 (𝑟) in wall.

Solution Procedure Start from the heat equation:

𝜌𝑐𝑝

(
�
�
��7
0

𝜕𝑇

𝜕𝑡
+�����:0
(®𝒗 · ∇)𝑇

)
= �

�7
0

¤𝑆𝑣 + 𝑘∇2𝑇

In cylindrical coordinates:

∇2𝑇 =
1

𝑟

𝜕

𝜕𝑟

(
𝑟
𝜕𝑇

𝜕𝑟

)
+ 1

𝑟2�
�
��7
0

𝜕2𝑇

𝜕𝜃2
+
�
�
��7
0

𝜕2𝑇

𝜕𝑧2

Therefore:
∇2𝑇 = 0 ⇒ 𝑇 = 𝐶1 ln(𝑟) + 𝐶2

Impose the Dirichlet boundary conditions for constants 𝐶1 and 𝐶2:

• 𝑟 = 𝑟1, 𝑇 = 𝑇𝑠,1 ⇒ 𝐶1 =
𝑇𝑠,1 − 𝑇𝑠,2
ln(𝑟1/𝑟2)

• 𝑟 = 𝑟2, 𝑇 = 𝑇𝑠,2 ⇒ 𝐶2 = 𝑇𝑠,2 −
𝑇𝑠,1 − 𝑇𝑠,2
ln(𝑟1/𝑟2)

ln(𝑟2)

Therefore,

𝑇 (𝑟) = 𝑇𝑠,1 − 𝑇𝑠,2
ln(𝑟1/𝑟2)

ln

(
𝑟

𝑟2

)
+ 𝑇𝑠,2
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5.4 Example 3: Wall Exposed to Convection

Example: Wall Exposed to Convection

Assumptions
• 1-D steady-state conduction⇒ 𝜕/𝜕𝑡 = 0;

• no external heat generation⇒ ¤𝑆𝑣 = 0;

• exposed to fluid convection 𝑇∞ at 𝑥 = 𝐿;

• constant 𝑘 .

Aim Solve for 𝑇 (𝑥) in wall.

Solution Procedure Start from the heat equation:

𝜌𝑐𝑝

(
�
�
��7
0

𝜕𝑇

𝜕𝑡
+�����:0
(®𝒗 · ∇)𝑇

)
= �

�7
0

¤𝑆𝑣 + 𝑘∇2𝑇

Rearrange,
d2𝑇

d𝑥2
= 0 ⇒ 𝑇 = 𝐶1𝑥 + 𝐶2

Impose the boundary conditions for constants 𝐶1 and 𝐶2:

• Dirichlet condition: 𝑥 = 0, 𝑇 = 𝑇0 ⇒ 𝐶2 = 0

• Newton’s Law of Cooling: 𝑥 = 𝐿, −𝑘 d𝑇
d𝑥

= ℎ(𝑇0 − 𝑇∞) ⇒ 𝐶1 = −ℎ(𝑇0 − 𝑇∞)
𝑘 + ℎ𝐿

Therefore,
𝑇 (𝑥) = −ℎ(𝑇0 − 𝑇∞)

𝑘 + ℎ𝐿 𝑥 + 𝑇0

How does the temperature profile within the wall look like? The gradient of 𝑇 (𝑥) is

−ℎ(𝑇0 − 𝑇∞)
𝑘 + ℎ𝐿 . Since 𝑇0 − 𝑇∞ is constant, what determines the temperature distribution within

the wall is the term
ℎ

𝑘 + ℎ𝐿 (ignore the minus symbol)⇒ need to discuss the following cases

• ℎ >> 𝑘 , i.e., convection is greater than conduction;

• ℎ ≈ 𝑘 , i.e., convection is about the same as conduction;

• ℎ << 𝑘 , i.e., conduction is grater than convection.

We thus introduce the Biot number, 𝐵𝑖, that represents the ratio of convection to conduction.
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5.4.1 The Biot Number

The Biot number, 𝐵𝑖, is a dimensionless number, that represents the relative magnitude of surface
convection to conduction within a solid.

Bi =
𝐿

𝑘𝐴

1

ℎ𝐴

=
ℎ𝐿

𝑘
=

temperature drop in wall
temperature drop across surface

[
((((((((
𝑊/(𝑚2 · 𝐾) · 𝑚

������
𝑊/(𝑚 · 𝐾)

]
• if Bi � 1: convection is more dominant⇒ assume uniform temperature within solid;

• if Bi � 1: cannot assume uniform temperature within solid.

Therefore, the temperature profile within the solid from the above example

5.5 Example 4: Internal Heat Generation

Example: Internal Heat Generation

Assumptions

• 1-D steady-state conduction⇒ 𝜕/𝜕𝑡 = 0;

• heat generated with the rate, ¤𝑆𝑣;

• no convection is considered⇒ (®𝒗 · ∇)𝑇 = 0;

• exposed to fluid convection at 𝑥 = 𝐿.

Aim Solve for 𝑇 (𝑥) in wall.

Solution Procedure N.B. We take advantage of the geometry symmetry, thus setting the
coordinate origin 𝑥 = 0 in the middle and only considering half of the geometry.
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Start from the heat equation:

𝜌𝑐𝑝

(
�
�
��7
0

𝜕𝑇

𝜕𝑡
+�����:0
(®𝒗 · ∇)𝑇

)
= ¤𝑆𝑣 + 𝑘∇2𝑇

Rearrange,

𝑘
d2𝑇

d𝑥2
+ ¤𝑆𝑣 = 0 ⇒ 𝑇 = −

¤𝑆𝑣

2𝑘
𝑥2 + 𝐶1𝑥 + 𝐶2

Impose the boundary conditions for constants 𝐶1 and 𝐶2:

• Neumann condition: 𝑥 = 0,
d𝑇

d𝑥
= 0 ⇒ 𝐶1 = 0

• Newton’s Law of Cooling: 𝑥 = 𝐿, −𝑘 d𝑇
d𝑥

= ℎ(𝑇 − 𝑇∞) ⇒ 𝐶2 =
¤𝑆𝑣𝐿

ℎ
+

¤𝑆𝑣𝐿
2

2𝑘
+ 𝑇∞

Therefore,

𝑇 (𝑥) =
¤𝑆𝑣𝐿

2

2𝑘

(
1 − 𝑥2

𝐿2

)
+

¤𝑆𝑣𝐿

ℎ
+ 𝑇∞

Symmetry of the solution along the centreline As we only solved the solution from 𝑥 = 0
to 𝑥 = 𝐿 (right half of the geometry), the full temperature profile can be obtained by mapping
the solution along the centreline.
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6 Transient Heat Conduction

6.1 Lumped Capacitance Method

Problem Formulation Consider a planar wall at an initial uniform temperature 𝑇𝑖 -

• At 𝑡 = 0, the wall is exposed to fluid at temperature 𝑇∞;

• Time-dependent changes in wall temperature from 𝑇𝑖 to 𝑇∞ (figure).

No convection and heat generation were considered. Given the initial and boundary conditions (𝑥, 𝑡):

• [IC] At 𝑡 = 0− (immediately before the initial convection exposure), 𝑇 = 𝑇𝑖, for all 𝑥 ≥ 0

• [BC] At 𝑥 = 0, 𝑇 = 𝑇𝑠, for all 𝑡 ≥ 0+ (after the convection exposure)

• [BC] At 𝑥 → ∞, 𝑇 → 𝑇𝑖, for all 𝑡 ≥ 0+

Aim Determine the temperature profile 𝑇 (𝑥, 𝑡).

Solution Procedure If 𝐵𝑖 << 1: temperature is nearly uniform within the solid at each point in
time,

• Conduction is very fast within the solid;

• Convection is very slow from the contact surface.

Therefore, we could simplify the problem 𝑇 (𝑥, 𝑡) → 𝑇 (𝑡).

Start from the differential form of the heat equation,

𝜕

𝜕𝑡

∫
𝐶𝑉

𝜌𝑐𝑝𝑇d𝑉 =

�
�
�
���

0, no source∫
𝐶𝑉

¤𝑆𝑣d𝑉 −
∮
𝐶𝑆

( ®𝒒 · 𝒏)d𝐴 −
����������:0, no advection∮
𝐶𝑆

𝜌𝑐𝑝𝑇 (®𝒗 · 𝒏)d𝐴

As 𝜌, 𝑐𝑝 and 𝑇 are uniform within CV, only 𝑇 changes with time (𝜕 → d):

𝜌𝑐𝑝𝑉
d𝑇

d𝑡
= −𝑞ℎ𝐴 ⇒ 𝜌𝑐𝑝𝑉

d𝑇

d𝑡
= − ℎ(𝑇 − 𝑇∞)︸      ︷︷      ︸

𝑞ℎ

𝐴
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The above equation states the balance of the rate of change of the thermal energy and the convective
heat transfer from surface.

It can be further re-arranged to a first-order ODE:

d𝑇

d𝑡
= − ℎ𝐴

𝜌𝑐𝑝𝑉
(𝑇 − 𝑇∞)

Define two parameters Θ = 𝑇 − 𝑇∞, 𝜏 =
𝜌𝑐𝑝𝑉

ℎ𝐴
,

dΘ
d𝑡

= −1

𝜏
Θ

solve the ODE−−−−−−−−→ Θ = 𝐶1𝑒
−𝑡/𝜏

where the constant 𝐶1 is subjected to the initial condition⇒ 𝐶1 = 𝑇𝑖 − 𝑇∞. The general solution is

Θ = (𝑇𝑖 − 𝑇∞)𝑒−𝑡/𝜏
expand−−−−−→

Θ=𝑇−𝑇∞
𝑇 = (𝑇𝑖 − 𝑇∞)𝑒−𝑡/𝜏 + 𝑇∞

where 𝜏 =
𝜌𝑐𝑝𝑉

ℎ𝐴
=

1

ℎ𝐴︸︷︷︸
𝑅𝑡

𝜌𝑐𝑝𝑉︸︷︷︸
𝐶𝑡

can be interpreted as the product of thermal resistance (𝑅𝑡) and the

heat capacity of the wall (𝐶𝑡).

𝑅𝑡 𝐶𝑡

6.2 Transient Conduction through Semi-Infinite Solid
Start from the differential form of the heat equation,

𝜌𝑐𝑝

(
𝜕𝑇

𝜕𝑡
+�����:0
(®𝒗 · ∇)𝑇

)
= �

�7
0

¤𝑆𝑣 + 𝑘∇2𝑇 ⇒ 𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑥2

Define dimensionless variables:
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• 𝑇 ∗ = 𝑇

𝑇
, where 𝑇 is the characteristic temperature scale;

• 𝑡∗ = 𝑡

�̂�
, where �̂� is the characteristic time scale;

• 𝑥∗ = 𝑥

𝑥
, where 𝑥 is the characteristic length scale.

Using chain rule:

𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑥2
⇒ 𝑇

�̂�

𝜕𝑇 ∗

𝜕𝑡∗
=
𝛼𝑇

𝑥2
𝜕2𝑇 ∗

𝜕𝑥∗2
divide by 𝑇−−−−−−→ 1

�̂�

𝜕𝑇 ∗

𝜕𝑡∗
=
𝛼

𝑥2
𝜕2𝑇 ∗

𝜕𝑥∗2

Since
𝜕𝑇 ∗

𝜕𝑡∗
∼ O(1) and 𝜕

2𝑇 ∗

𝜕𝑥∗2
∼ O(1), i.e., dimensionless derivatives have an order of magnitude of 1

since both the denominator and numerator quantities are of the same dimension; the remaining terms
must also have similarities in order for the equation holds true:

1

𝑡∗
∼ 𝛼

𝑥∗2
⇒ 𝑥∗ ∼

√
𝛼𝑡∗

Given the temperature profile at time 𝑡1, what does the temperature profile look like at some
later time 𝑡2? Motivated by the concept of “self-similarity”, define a similarity variable, 𝜂

𝜂 =
𝑥

2
√
𝛼𝑡

This would allow us to perform change of variable,

𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑥2
⇔ −2𝜂d𝑇

d𝜂
=
d2𝑇

d𝜂2

Derivation

The partial differentials of 𝜂 with respect to 𝑡 and 𝑥 are

𝜕𝜂

𝜕𝑡
= − 𝑥𝛼

4(𝛼𝑡) 32
= −1

4

𝑥
√
𝛼𝑡

𝛼

𝛼𝑡
= − 𝜂

2𝑡
and

𝜕𝜂

𝜕𝑥
=

1

2
√
𝛼𝑡

By chain rule, the first term in heat equation can be expressed as

𝜕𝑇

𝜕𝑡
=
d𝑇

d𝜂

𝜕𝜂

𝜕𝑡
= − 𝜂

2𝑡

d𝑇

d𝜂︸  ︷︷  ︸
new L.H.S.

the second term in heat equation can be expressed as

𝜕2𝑇

𝜕𝑥2
=
d2𝑇

d𝜂2

(
𝜕𝜂

𝜕𝑥

)2
=

1

4𝛼𝑡

d2𝑇

d𝜂2︸   ︷︷   ︸
new R.H.S.

Equate the new L.H.S. to the new R.H.S., and rearrange, the new ODE is

−2𝜂d𝑇
d𝜂

=
d2𝑇

d𝜂2
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−2𝜂d𝑇
d𝜂

=
d2𝑇

d𝜂2
⇒ −2𝜂𝜉 = d𝜉

d𝜂
⇒ −

∫
2𝜂d𝜂 =

∫
1

𝜉
d𝜉

This gives us
−𝜂2 = ln 𝜉 + 𝐶1 ⇒ 𝜉 = 𝐶2𝑒

−𝜂2

Therefore, by definition 𝜉 = d𝑇/d𝜂:

𝑇 = 𝐶2

∫ 𝜂

0

𝑒−𝑠
2
d𝑠 + 𝐶3

where 𝑠 here within the integral is a dummy variable.

Impose the boundary conditions:

• at 𝜂 = 0, 𝑇 = 𝑇𝑠,⇒ 𝐶3 = 𝑇𝑠

• as 𝜂 → ∞, 𝑇 → 𝑇𝑖,⇒ 𝐶2 =
2(𝑇𝑖−𝑇𝑠 )√

𝜋

Therefore,
𝑇 =

2(𝑇𝑖 − 𝑇𝑠)√
𝜋

∫ 𝜂

0

𝑒−𝑠
2
d𝑠 + 𝑇𝑠

Define the error function erf as
erf (𝑧) = 2

√
𝜋

∫ 𝑧

0

𝑒−𝑠
2
d𝑠

and substitute
𝑇 = (𝑇𝑖 − 𝑇𝑠) erf (𝜂) + 𝑇𝑠

Alternatively, define the co-error function, erfc as

erfc(𝑧) = 1 − erf (𝑧)

The solution becomes

𝑇 = (𝑇𝑠 − 𝑇𝑖) erfc(𝜂) + 𝑇𝑖 ⇒ 𝑇 = (𝑇𝑠 − 𝑇𝑖) erfc
(
𝑥

2
√
𝛼𝑡

)
+ 𝑇𝑖



Bioengineering Science 2 (Heat and Mass Transport) 28

𝑧 erf(𝑧) 𝑧 erf(𝑧) 𝑧 erf(𝑧)
0.000 0.00000 0.360 0.38933 1.040 0.85865
0.020 0.02256 0.380 0.40901 1.080 0.87333
0.040 0.04511 0.400 0.42839 1.120 0.88679
0.060 0.06762 0.440 0.46623 1.160 0.89910
0.080 0.09008 0.480 0.50275 1.200 0.91031
0.100 0.11246 0.520 0.53790 1.300 0.93401
0.120 0.13476 0.560 0.57162 1.400 0.95229
0.140 0.15695 0.600 0.60386 1.500 0.96611
0.160 0.17901 0.640 0.63459 1.600 0.97635
0.180 0.20094 0.680 0.66378 1.700 0.98379
0.200 0.22270 0.720 0.69143 1.800 0.98909
0.220 0.24430 0.760 0.71754 1.900 0.99279
0.240 0.26570 0.800 0.74210 2.000 0.99532
0.260 0.28690 0.840 0.76514 2.200 0.99814
0.280 0.30788 0.880 0.78669 2.400 0.99931
0.300 0.32863 0.920 0.80677 2.600 0.99976
0.320 0.34913 0.960 0.82542 2.800 0.99992
0.340 0.36936 1.000 0.84270 3.000 0.99998

Table 2: Values of 𝑧 and erf(𝑧)
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7 Convective Heat Transfer
Convection The energy transfer between a surface and a fluid moving over the surface.

What determines the value of the convective heat transfer
coefficient, ℎ?

• Fluid conductivity

• Fluid velocity

• Surface geometry

• Position along the surface

• ...

To find the total convective heat flow, ¤𝑄ℎ,

¤𝑄ℎ =
∫
𝐴𝑠

𝑞ℎd𝐴 = (𝑇𝑠 − 𝑇∞)
∫
𝐴𝑠

ℎd𝐴

Define the average convection coefficient, ℎ̄, has the following expression:

ℎ̄ =
1

𝐴𝑠

∫
𝐴𝑠

ℎd𝐴𝑠

Therefore,
¤𝑄ℎ = ℎ̄𝐴𝑠 (𝑇𝑠 − 𝑇∞)

This expression is useful in describing convective heat transfer for a whole body.

7.1 Boundary Layers and Heat Convective Coefficient
Convection occurs at a surface, but how does fluid interact with the surface? This requires knowledge
of boundary layers.

7.1.1 Velocity Boundary Layer

Consider a uniform free-stream flow contacting a flat surface, the velocity 𝑢 increases from 0 at the
surface (non-slip condition) to approximately 𝑢∞ at some distance from the surface, 𝛿𝑉 .

Figure 6: A uniform “free-stream” flow contacting a flat surface
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where

- 𝑢∞: free stream velocity;

- 𝑢(𝑥, 𝑦): boundary layer velocity profile;

- 𝛿𝑉 : velocity boundary layer thickness.

Velocity boundary layer thickness 𝛿𝑣 ∼
√
𝜈𝑡, where 𝜈 is defined as effective diffusivity with the

expression 𝜈 = 𝜇/𝜌.

7.1.2 Thermal Boundary Layer

Consider a uniform free-stream flow contacting an isothermal flat surface: at 𝑦 = 0, there is a thermal
equilibrium between the flow and the surface; Thermal “diffusion” transfers heat through fluid.

Figure 7: A uniform “free-stream” flow contacting a flat surface

where

- 𝑇∞: free stream temperature;

- 𝑇 (𝑥, 𝑦): boundary layer temperature profile;

- 𝛿𝑇 : temperature boundary layer thickness.

Thermal boundary layer thickness 𝛿𝑇 ∼
√
𝛼𝑡, where 𝛼 is defined as effective diffusivity with the

expression 𝛼 = 𝑘/𝜌𝑐𝑝.

Thermal and velocity boundary layers occur simultaneously!

7.1.3 Heat Convective Coefficient

Given a thermal boundary layer, how do we calculate ℎ? At 𝑦 = 0, both convection and conduc-
tion occur, this states two fluxes must be balanced, 𝑞ℎ = 𝑞𝑘,

ℎ(𝑇𝑠 − 𝑇𝑚)︸      ︷︷      ︸
𝑞ℎ

= −𝑘 d𝑇
d𝑦︸ ︷︷ ︸

𝑞𝑘

⇒ ℎ = − 𝑘

(𝑇𝑠 − 𝑇∞)
d𝑇

d𝑦

����
𝑦=0

Define the dimensionless temperature, Θ, and the dimensionless 𝑦-length scale, 𝑦∗,

Θ =
𝑇 − 𝑇∞
𝑇𝑠 − 𝑇∞

, 𝑦∗ =
𝑦

𝛿𝑇
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Hence,

ℎ = − 𝑘

(𝑇𝑠 − 𝑇∞)
d𝑇

d𝑦

����
𝑦=0

= − 𝑘

(𝑇𝑠 − 𝑇∞)
(𝑇𝑠 − 𝑇∞)

𝛿𝑇

dΘ
d𝑦∗

����
𝑦=0

= −
𝑘
√
𝑢∞√
𝛼𝑥

dΘ
d𝑦∗

����
𝑦=0

This states
ℎ ∼

𝑘
√
𝑢∞√
𝛼𝑥

dΘ
d𝑦∗

where ℎ decreases like 1/√𝑥.

7.2 Turbulence
Motivation The first step in a convection problem is to determine whether the boundary layer is
laminar or turbulent.

What is turbulence?

• Laminar flow: fluid flows in parallel layers without mixing.

• Turbulent flow: irregular, non-laminar or chaotic flow pathways with mixing.

Viscous
sublayer

Buffer layer

Turbulent
region

u
∞

u
∞

Streamline
v

u

x, u

y, v

u
∞

x
c

Laminar

x

Transition

Turbulent

Figure 8: Velocity boundary layer development on a flat plate.
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Figure 9: Turbulence in a pipe.

• Boundary layer transition to turbulence after a critical length, 𝑥𝑐. Reynolds number, 𝑅𝑒, de-
picts the turbulent transition:

𝑅𝑒𝑥 =
𝜌𝑢∞𝑥

𝜇
=
𝑢∞𝑥

𝜈

7.3 Boundary Layer Thickness

Dimensionless Number Expression Description

Reynolds Number Re𝑥 =
𝑢∞𝑥

𝜈
ratio of internal to viscous forces

Prandtl Number Pr =
𝜈

𝛼
ratio of momentum to thermal diffusivity

Biot Number Bi =
ℎ𝐿

𝑘
ratio of conductive resistance to convective resis-
tance (in solid)

Nusselt Number Nu =
ℎ𝐿

𝑘
dimensionless temperature gradient at surface (in
fluid)

Table 3: Summary of dimensionless numbers

7.3.1 The Prandtl Number, 𝑃𝑟

The Prandtl number, 𝑃𝑟 , represents the ratio of momentum diffusivity (𝜈 =
𝜇

𝜌

[
m2

s

]
) to thermal diffu-

sivity (𝛼 =
𝑘

𝜌𝑐𝑝

[
m2

s

]
). It is an intrinsic property of the fluid at a set temperature.

Consider external flow over a flat plate,
𝛿𝑉
𝛿𝑇

∼
√
𝜈

√
𝛼
= 𝑃𝑟

1
2
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thus, 𝑃𝑟 gives a physical indication of the relative thickness of the viscous boundary layer 𝛿𝑉 to the
thermal boundary layer 𝛿𝑇 .

7.3.2 Velocity Boundary Layer Thickness, 𝛿𝑉

𝛿𝑉 ∼ 𝑥 𝑅𝑒−
1
2

𝑥

What is the scale of 𝛿𝑉?

Neglect any thermal effects⇒ no change in 𝜈 and 𝜌.

Momentum diffuses from a flat plate into semi-infinite fluid⇒ viscous penetration depth:

𝛿𝑉 ∼
√
𝜈
𝑥

𝑢∞

Re-arrange:

𝛿𝑉 ∼
(
𝜈 𝑥

𝑢∞

) 1
2

=

(
𝜈

𝑢∞ 𝑥

) 1
2

︸    ︷︷    ︸
𝑅𝑒

− 1
2

𝑥 = 𝑥 𝑅𝑒−
1
2

7.3.3 Thermal Boundary Layer Thickness, 𝛿𝑇

For 𝑃𝑟 << 1 𝛿𝑉 << 𝛿𝑇 ,

ℎ ∼ 𝑘

𝛿𝑇
∼ 𝑘 𝑢

1
2
∞

𝛼
1
2 𝑥

1
2

⇒ 𝛿𝑇 ∼ 𝑥
(
𝛼
𝑥

𝑢∞

) 1
2

Also,
ℎ 𝑥

𝑘︸︷︷︸
𝑁𝑢𝑥

∼ 𝑢
1
2
∞ 𝑥

1
2

𝜈
1
2︸ ︷︷ ︸

𝑅𝑒
1/2
𝑥

𝜈
1
2

𝛼
1
2︸︷︷︸

𝑃𝑟1/2

⇒ 𝑁𝑢𝑥 ∼ 𝑅𝑒
1
2
𝑥 𝑃𝑟

1
2

For 𝑃𝑟 >> 1

𝛿𝑇 ∼
(
𝛼𝑥

𝑢

) 1
2

∼
(
𝛼 𝑥 𝛿𝑉
𝑢∞ 𝛿𝑇

) 1
2

Thus,

𝛿3𝑇
𝛿3𝑉

∼ 𝛼 𝑥

𝑢∞ 𝛿
2
𝑉

∼ 𝛼 𝑅𝑒𝑥
𝑢∞ 𝑥

=
�
�
���

1
𝜈 𝑅𝑒𝑥
𝑢∞ 𝑥

𝛼

𝜈
∼ 1

𝑃𝑟
⇒ 𝛿𝑉

𝛿𝑇
∼ 𝑃𝑟 1

3

Since
𝛿𝑉 ∼ 𝑥 𝑅𝑒−

1
2

𝑥

𝛿𝑇 ∼ 𝑥 𝑅𝑒− 1
2𝑃𝑟−

1
3
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7.4 Internal Flow
Velocity entrance length Hydrodynamic entrance length

𝑥𝑒,𝑣 ≈ 0.005𝐷𝑅𝑒𝐷

Thermal entrance length
𝑥𝑒,𝑇 = 0.005𝐷𝑅𝑒𝐷𝑃𝑟

• when 𝑥 > 𝑥𝑒,𝑇 , there is no fixed free stream temperature 𝑇∞ - amean temperature, 𝑇𝑚, replaced
𝑇∞ as the reference temperature.

𝑇𝑚 =
2𝜋

𝑄

∫ 𝑅

0

𝑇𝑢𝑟d𝑟

• when the boundary layer is thermally fully developed: adding heat must increase the tempera-
ture - 𝑇 changed in space, not time, general shape of the thermal profile is preserved.

Assume a constant profile,

Θ′ = 𝑎

(
1 − 𝑟2

𝑅2

)
⇒ 𝑇 = 𝑎(𝑇𝑚 − 𝑇𝑠)

(
1 − 𝑟2

𝑅2

)
+ 𝑇𝑠

⇒ 𝜕𝑇

𝜕𝑟
= 𝑎(𝑇𝑚 − 𝑇𝑠)

(
− 2𝑟

𝑅2

)
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Therefore,

𝑞𝑟 = ℎ(𝑇𝑚 − 𝑇𝑠) = −𝑘 𝜕𝑇
𝜕𝑟

����
𝑟=𝑅

⇒ ℎ(𝑇𝑚 − 𝑇𝑠) =
2𝑘𝑎

𝑅
(𝑇𝑚 − 𝑇𝑠)

⇒ ℎ =
4𝑘𝑎

𝐷

Therefore, the Nusselt Number

Nu𝐷 =
ℎ𝐷

𝑘
= 4𝑎 ≈ 4 ⇒

{
4.36, uniform surface heat flux
3.66, uniform surface temperature
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8 Mass Transport

8.1 Advection and Diffusion
• The total flux, ®𝒋,

®𝒋 = ®𝒋𝑎 + ®𝒋𝑑

• Advection of Solute, ®𝒋𝑎: If the solvent undergoes bulk motion, then there will be an additional
solute flux as the solute is carried along with the flow.

®𝒋𝑎 = ®𝒗𝐶

where 𝐶 is the solute concentration.

• Diffusive Flux, ®𝒋𝑑: the diffusive flux of solute is driven by a concentration gradient.

®𝒋𝑎 = −D𝐴𝐵∇𝐶

– The diffusivity, D𝐴𝐵, is determined by the Stokes-Einstein Relationship

D𝐴𝐵 =
𝑘𝐵𝑇

6𝜋𝜇𝑎

where 𝑘𝐵 ≈ 1.38 × 10−2 J/K is the Boltzmann’s constant; and 𝑎 =

(
3𝑀𝑤

4𝜋𝜌𝑁𝐴

) 1
3

with 𝑀𝑤

being the molecular weight, 𝑁𝐴 is Avogadro’s number.

Pèclet number, Pe
Pe =

𝑈𝐿

D𝐴𝐵

which states the ratio of advection to diffusion.

8.2 The Integral and Differential Form of the Conservation of Mass
The Integral form

𝜕

𝜕𝑡

∫
𝐶𝑉

𝐶d𝑉 =
∫
𝐶𝑉

¤𝑆𝑣d𝑉 −
∮
𝐶𝑆

( ®𝒋𝑑 · 𝒏)d𝐴 −
∮
𝐶𝑆

𝐶 (®𝒗 · 𝒏)d𝐴

The differential form
𝜕𝐶

𝜕𝑡
+ (®𝒗 · ∇)𝐶 = D∇2𝐶 + ¤𝑆𝑣

A special case: Fick’s Second Law - no advection (𝒖 = 0) nor solute production ( ¤𝑆𝑣 = 0)

𝜕𝐶

𝜕𝑡
= D∇2𝐶
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