Vibrations and Waves

Summary of Three Types of Signal Oscillations

Binghuan Li

Department of Bioengineering, Imperial College London

1 Free/Undamped Oscillation

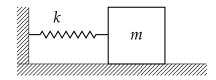


Figure 1: A spring-mass mechanical system

The equilibrium state of the system shown in Figure 1 can be mathematically described by Hooke's law:

$$F = ma = -kx \tag{1}$$

Re-arrange Equation 1, we could get

$$ma + kx = 0 \tag{2}$$

The acceleration, *a*, is the second-derivative of the displacement, *x*, with respect to the time, $t: a = \frac{d^2x}{dt^2}$. So Equation 2 can be converted to a 2nd-order ordinary differential equation:

$$m\frac{d^2x}{dt^2} + kx = 0\tag{3}$$

Equation 3 is commonly referred to as the *governing equation* that describes the dynamic behaviours of the mechanical system shown in Figure 1. This equation is now ready to be solved!

Solution Procedure

The coefficient of the 2^{nd} -order derivative term becomes 1 if we divide the mass *m* in Equation 3,

$$\frac{d^2x}{dt^2} + \frac{k}{m}x = 0\tag{4}$$

Applying the *trial solution* $x = A\cos(\omega t + \phi)$ to Equation 4^a :

$$\underbrace{-A\omega^2\cos(\omega t + \phi)}_{\ddot{x} = d^2x/dt^2} + \frac{k}{m}\underbrace{A\cos(\omega t + \phi)}_{x} = 0$$
(5)

Re-arrange , we could separate a common, non-zero term $\cos(\omega t + \phi)$:

$$(-\omega^2 + \frac{k}{m}) \underbrace{A \cdot \cos(\omega t + \phi)}_{\text{this term cannot be zero!}} = 0$$
(6)

Equation 6 implies that only the first term $(-\omega^2 + \frac{k}{m})$ is zero (since the cosine term can *never* be zero!). Therefore, we can express ω in terms of k and m:

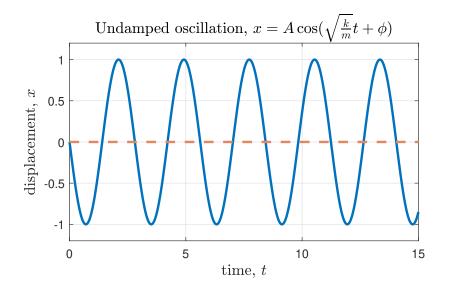
$$-\omega^2 + \frac{k}{m} = 0 \quad \rightarrow \qquad \omega = \pm \sqrt{\frac{k}{m}}$$
 (7)

We are only interested in the positive solution of ω *!* Therefore, the solution for Equation 3 is

$$x = A\cos(\sqrt{\frac{k}{m}}t + \phi)$$
(8)

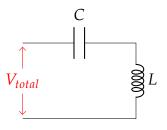
^{*a*}Well... for now you just need to accept that this solution is correct!

Equation 8 is the general solution for a **undamped system**. Let us visualise this by plotting the displacement as a function of time (x-t):



As you can see, there is no decay of the displacement as time goes by, *i.e.*, the amplitude of the displacement is constant due to the absence of the damping effects. The mass in the spring-mass system will move back and forth with perfect conservation of energy!

Electrical analogy The electrical equivalent circuit that can generate the free oscillation is a capacitance (*C*) -inductance (*L*) circuit.



The voltage across

• the inductor, *L*: $V_L = L \frac{dI}{dt}$

• the capacitor, *C*:
$$V_{\rm C} = \frac{1}{C} \int_0^t I(\tau) d\tau$$

By Kirchhoff's voltage law:

$$V_L + V_C = V_{total} \quad \rightarrow \quad L \frac{dI}{dt} + \frac{1}{C} \int_0^t I(\tau) d\tau = V_{total}$$

Differentiate:

$$L\frac{d^2I}{dt^2} + \frac{1}{C}I = 0$$

which is the governing equation for the above *L*-*C* system.

2 Damped Oscillation

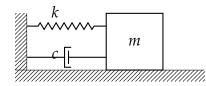


Figure 2: A spring-mass-damper mechanical system

Figure 2 shows a spring-mass-damper (*k-m-c*) system. The equilibrium state of the system can be mathematically described by:

$$F = ma = -cv - kx \tag{9}$$

where *c* is known as the *damping coefficient*, *v* is the moving speed of the mass, and $c \cdot v$ is defined as the force exerted by the mechanical damper. Re-arrange Equation 9, we could get

$$ma + cv + kx = 0 \tag{10}$$

The velocity, v and the acceleration, a are defined as the 1st and 2nd derivative of the displacement, x, with respect to the time, t: $v = \frac{dx}{dt}$, $a = \frac{d^2x}{dt^2}$. Therefore, Equation 10 can be converted to a 2nd-order ordinary differential equation (again!)

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = 0 \tag{11}$$

Solution Procedure

The coefficient of the 2^{nd} -order derivative term becomes 1 if we divide the mass *m* in Equation 11,

$$\frac{d^2x}{dt^2} + \frac{c}{m}\frac{dx}{dt} + \frac{k}{m}x = 0$$
(12)

Let us first define two parameters: natural frequency and damping factor:

• Natural frequency,
$$\omega_n = \sqrt{\frac{k}{m}}$$

• Damping factor, $\gamma = \frac{c}{2\sqrt{km}}$

If we apply the natural frequency and damping factor defined above to Equation 12, we will obtain a more *generic* expression of the governing equation:

$$\frac{d^2x}{dt^2} + 2\gamma\omega_n\frac{dx}{dt} + \omega_n^2 x = 0$$
(13)

To solve Equation 13, we shall apply the trial solution $x = Ae^{\mu t}$ to Equation 13^{*a*}.

$$\underbrace{\mu^2 A e^{\mu t}}_{\ddot{x}} + 2\gamma \omega_n \underbrace{\mu A e^{\mu t}}_{\dot{x}} + \omega_n^2 \underbrace{A e^{\mu t}}_{x} = 0$$
(14)

Re-arrange , we could separate a common, non-zero term $Ae^{\mu t}$:

$$(\mu^2 + 2\gamma\omega_n\mu + \omega_n^2) \underbrace{A \cdot e^{\mu t}}_{\text{non-zero!}} = 0$$
(15)

Equation 15 implies that only the first term $(\mu^2 + 2\gamma\omega_n\mu + \omega_n^2)$ is zero (since the exponential term can *never* be zero!). Therefore, we can solve the quadratic equation of μ to solve μ in terms of γ and ω_n :

$$\mu^{2} + 2\gamma\omega_{n}\mu + \omega_{n}^{2} = 0 \quad \rightarrow \qquad \mu = -\gamma\omega_{n} \pm \omega_{n}\sqrt{\gamma^{2} - 1}$$
(16)

What is the general solution to displacement? we need to consider three conditions of $\gamma^2 - 1$ (the term under the square root), as they correspond to 3 different types of damping effects.

^{*a*}Let us assume this trial solution is correct for now!

2.1 Condition 1: $\gamma^2 - 1 < 0$ - Light Damping

If $\gamma^2 - 1 < 0$, the general solution of a 2nd-order ODE should hold the format

$$x = e^{\mu t} (A_1 \cos(\omega_n x) + iA_2 \sin(\omega_n x))$$

i.e., the solution *might be* a complex number.

To determine this, for convenience, we first define $\omega_d = \omega_n \sqrt{1 - \gamma^2}$,

$$x = A_{1}e^{\mu_{1}t} + A_{2}e^{\mu_{2}t}$$

$$= A_{1}e^{(-\gamma\omega_{n}+j\omega_{d})t} + A_{2}e^{(-\gamma\omega_{n}-j\omega_{d})t}$$

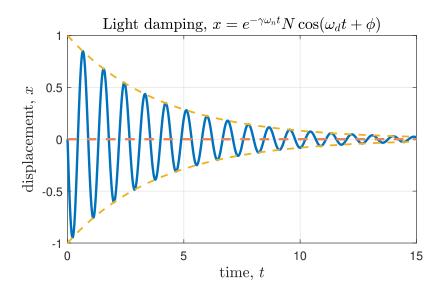
$$= e^{-\gamma\omega_{n}t} \left(A_{1} \left(\cos(\omega_{d}t) + j\sin(\omega_{d}t) \right) + A_{2} \left(\cos(\omega_{d}t) - j\sin(\omega_{d}t) \right) \right)$$

$$= e^{-\gamma\omega_{n}t} \left[\underbrace{(A_{1} + A_{2})}_{C=N\cos\phi} \cos(\omega_{d}t) + \underbrace{j(A_{1} - A_{2})}_{-D=-N\sin\phi} \sin(\omega_{d}t) \right]$$

$$= e^{-\gamma\omega_{n}t} \left(N\cos\phi\cos\omega_{d}t - N\sin\phi\sin\omega_{d}t \right)$$

$$= \underbrace{e^{-\gamma\omega_{n}t}N\cos(\omega_{d}t+\phi)}$$
(17)

To plot *x* against *t*:



Two observations we can make here:

- 1. the occurrence of oscillations, this is described by the cosine term in Equation 17; and
- 2. the amplitude of oscillation decays with time (damped) this is due to the exponential term in Equation 17. The yellow envelops shown in Equation 2.1 are exactly the plot of $e^{-\omega_n\gamma t}$ and $-e^{-\omega_n\gamma t}$.

This type of damping oscillation is commonly known as the light damping.

2.2 Condition 2: $\gamma^2 - 1 > 0$ - Heavy Damping

If $\gamma^2 - 1 > 0$, there are two distinct roots of μ , therefore, the general solution becomes

$$x = A_1 e^{\mu_+ t} + A_2 e^{\mu_- t} = A_1 e^{-(\gamma \omega_n + \omega_n \sqrt{\gamma^2 - 1})t} + A_2 e^{-(\gamma \omega_n - \omega_n \sqrt{\gamma^2 - 1})t}$$
(18)

To plot *x* against *t*:



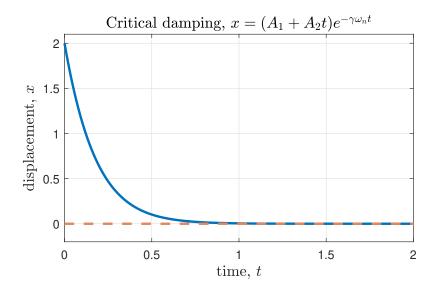
The mass attains its equilibrium gradually **without** any oscillation. This is known as the **heavy damping**.

2.3 Condition 3: $\gamma^2 - 1 = 0$ - Critical Damping

If $\gamma^2 - 1 = 0$, the general solution of a 2nd-order ODE should hold the format

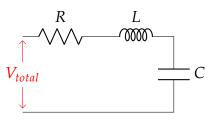
$$x = (A_1 + A_2 t)e^{\mu t}$$
(19)

where in this situation, $\mu = -\omega_n \gamma$. To plot *x* against *t*:



The mass returns to the equilibrium position as quickly as possible (*i.e.*, quickly within 1 oscillation). This is known as the **critical damping**. It is the threshold between heavy damping and light damping.

Electrical analogy Three types of damped oscillations can be generated with the following *L*-*C*-*R* circuit:



The voltage across

- the resistor, $R: V_r = RI$
- the inductor, *L*: $V_L = L \frac{dI}{dt}$

• the capacitor,
$$C: V_C = \frac{1}{C} \int_0^t I(\tau) d\tau$$

By Kirchhoff's voltage law:

$$V_R + V_L + V_C = V_{total} \rightarrow RI + L \frac{dI}{dt} + \frac{1}{C} \int_0^t I(\tau) d\tau = V_{total}$$

Differentiate:

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{1}{C}I = 0$$

which is a second-order, homogeneous differential equation. To solve this ODE, the corresponding auxiliary equation is

$$Lm^2 + Rm + \frac{1}{C} = 0$$

which yields two solutions

$$m_{1,2} = \frac{-R}{2L} \pm \frac{\sqrt{R^2 - 4L/C}}{2L}$$

we need to discuss the value of $\sqrt{R^2 - 4L/C}$ to determine the type of damping:

- $R^2 > 4L/C$: heavy damping
- $R^2 < 4L/C$: under damping
- $R^2 = 4L/C$: critical damping

3 Forced Oscillation

So far, we have considered both undamped oscillation and damped oscillation - no further external force was applied once the system was released from the initial position. How will system dynamic behaves if we apply an external force to the system periodically?

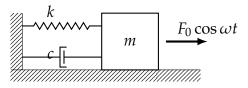


Figure 3: A spring-mass-damper mechanical system subjected to a periodic force

Figure 3 shows a spring-mass-damper (*k*-*m*-*c*) system subjected to a periodic external force $F(t) = F_0 \cos \omega t$. The equilibrium state of the system can be mathematically described by:

$$F_{total} = ma = -cv - kx + F_0 \cos \omega t \tag{20}$$

Re-arrange Equation 20, we could get

$$ma + cv + kx = F_0 \cos \omega t \tag{21}$$

Similarly, the velocity, v and the acceleration, a are defined as the 1st and 2nd derivative of the displacement, x, with respect to the time, t: $v = \frac{dx}{dt}$, $a = \frac{d^2x}{dt^2}$. Therefore, Equation 10 can be converted to an *inhomogeneous* 2nd-order ordinary differential equation.

$$m\frac{d^2x}{dt^2} + c\frac{dx}{dt} + kx = F_0 \cos \omega t$$
(22)

and it is equivalent to

$$\frac{d^2x}{dt^2} + 2\gamma\omega_n \frac{dx}{dt} + \omega_n^2 x = \frac{F_0}{m}\cos\omega t$$
(23)

where ω_n is natural frequency, γ is damping factor¹.

Solution Procedure and Discussions

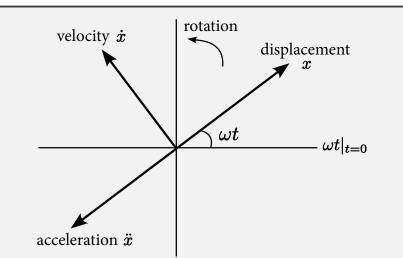
To solve this ODE, we shall apply the trial solution $x = x_0 \cos(\omega t - \phi)$. Therefore, we have:

• the velocity,
$$v = \frac{dx}{dt} = -x_0\omega\sin(\omega t - \phi) = x_0\omega\cos(\omega t - \phi + \frac{\pi}{2})$$
; and

• the acceleration,
$$a = \frac{d^2x}{dt^2} = -x_0\omega^2\cos(\omega t - \phi) = x_0\omega^2\cos(\omega t - \phi + \pi);$$

The relative location of x, v, and a can be roughly plotted as

¹Why? See the previous chapter.



i.e., there exists a $\pi/2$ and π phase difference between the velocity and displacement, and acceleration and displacement, respectively.

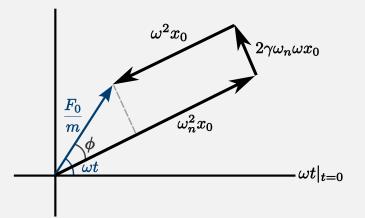
Expression the trial solution in Euler's form: $x = x_0 \cos(\omega t - \phi) = x_0 e^{j(\omega t - \phi)}$ and substitute into the governing equation:

$$\underbrace{-\omega^2 x_0 e^{j\omega t} e^{-j\phi}}_{\ddot{x}} + 2\gamma \omega_n \underbrace{j\omega x_0 e^{j\omega t} e^{-j\phi}}_{\dot{x}} + \omega_n^2 \underbrace{x_0 e^{j\omega t} e^{-j\phi}}_{x} = \frac{F_0}{m} e^{j\omega t}$$
(24)

Re-arrange,

$$e^{j\omega t}e^{-j\phi}(-\omega^2 x_0 + j2\gamma\omega_n\omega x_0 + \omega_n^2 x_0) = \frac{F_0}{m}e^{j\omega t}$$
(25)

What does Equation 25 tell us? Well, the term $e^{-\phi j}$ implies an anticlockwise rotation of an angle ϕ . Therefore, Equation 25 can be graphically represented as



The length of F_0/m (blue) can be parsed into 3 individual trajectories - $\omega_n^2 x_0$ is the trajectory of the displacement, $2\gamma \omega_n \omega x_0$ is the trajectory of the velocity, and $\omega^2 x_0$ is the trajectory of the acceleration^{*a*}.

Therefore, we can represent the length (*magnitude*) of x_0 using Pythagoras' theorem,

$$x_0| = \frac{F_0/m}{\sqrt{(\omega_n^2 \omega^2)^2 + (2\gamma \omega_n \omega)^2}}$$
(26)

and similarly, the *phase* of x_0 :

$$\tan \phi = \frac{2\gamma\omega_n\omega}{\omega_n^2 - \omega^2} \quad \to \quad \phi = \tan^{-1}\left(\frac{2\gamma\omega_n\omega}{\omega_n^2 - \omega^2}\right) \tag{27}$$

Let us think about how the relations between ω , ω_n , $2\gamma\omega_n\omega$ could affect the magnitude response:

1. When $\omega \rightarrow 0$,

$$x_0 = \frac{F_0}{m\omega_n^2} = \frac{F_0}{k}$$

which implies that x_0 is stiffness controlled.

2. If $\omega \to \infty$,

$$\omega^2 = \frac{F_0}{mx_0} \quad \to \quad x_0 = \frac{F_0}{\omega^2 m}$$

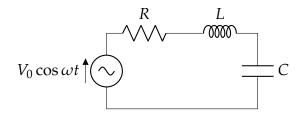
which implies that x_0 is mass controlled.

3. If $\omega_n = \omega$, the gradient of the magnitude response $|x_0|$ with respect to ω is zero, the peak magnitude of x_0 occurs - also known as the **resonance**. The **resonance frequency** is represented as:

$$\omega_p = \sqrt{1 - 2\gamma^2}$$

^aNote their directions, and correlates to the figure above!

Electrical analogy The forced oscillation can be generated with the following *L*-*C*-*R* circuit with an additional periodic voltage source term:



The governing question of the system shown above is

$$L\frac{d^2I}{dt^2} + R\frac{dI}{dt} + \frac{1}{C}I = V_0\cos\omega t$$