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The diffusion equation in 1D is given by
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where C denotes a physical quantity to be conserved e.g., temperature distribution in heat trans-
port, concentration in mass transport, or velocity in conservation of momentum. C has both

temporal and spatial dependency, i.e., C(x,t). D is the diffusivity, which quantifies how fast the

quantity (heat, mass, momentum) diffuses.

Question 1: Verify that C(x, 1) = C, satisfies the 1D heat equation, where C, is a constant.

Since C, is a constant, the derivatives w.r.t. ¢ and x are both 0,
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This equates L.H.S. and R.H.S. of the 1D diffusion equation. v/

Question 2: Verify that C(x,7) = Cy(1 + %) also satisfies the 1D heat equation, where C,

and L are constants.

1. Differentiate C(x,t) w.r.t. ¢ yields 0.

2. Differentiate C(x, t) w.r.t. x yields

0.
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This equates L.H.S. and R.H.S. of the 1D diffusion equation. v/



Question 3:  Verify that C(x,7) = 4 / %Dt e_le 4D1 also satisfies the 1D heat equation.
T

1. Differentiate C(x,t) w.r.t. ¢ yields
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2. Differentiate C(x, t) w.r.t. ¢ yields
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3. Multiply o0 by D (which is the R.H.S. of the 1D diffusion equation)
X
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The Schrodinger equation in 1D is given by
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where y is the wave function that describes the quantum state of a partial, and i is the imaginary

unit (i.e., i = —1).

Question 4: Verify that y(x,?) = ¢! ¥ js a solution of the 1D Schrodinger equation if

w = k>
1. Differentiate y(x, ¢) w.r.t. ¢ yields
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2. Differentiate y(x, f) w.r.t. x yields
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3. Multiply 5

by i (which is the L.H.S. of the 1D Schrodinger equation)
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Question 5:  Verify that y(x, 1) = e-***®) js also a solution of the 1D Schridinger equa-

tion if @ = —k2.

1. Differentiate y(x, ¢) w.r.t. ¢ yields
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2. Differentiate y(x, t) w.r.t. x yields
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3. Multiply 5 by i (which is the L.H.S. of the 1D Schrédinger equation)
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