Surrogate Modelling of Fluid Dynamics within Various Vascular Geometries with Physics-Informed Neural Networks

Binghuan Li¹ | binghuan.li19@imperial.ac.uk

Supervisors: Choon Hwai Yap², Hong Shen Wong², Wei Xuan Chan²

¹ Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom

² Department of Bioengineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom

From CFD to PINN

- Huge alternations in flow dynamics are associated with the cardiovascular diseases (e.g., hypoplastic left-heart syndrome)
- *In-silico* fluid modelling is a powerful surrogate to the highly invasive clinical measurements

Wong, H S & Li, B et al. (2023)

From CFD to PINN

- Huge alternations in flow dynamics are associated with the cardiovascular diseases (e.g., hypoplastic left-heart syndrome)
- *In-silico* fluid modelling is a powerful surrogate to the highly invasive clinical measurements

Numerical solvers (CFD, FSI)

- Accurate
- Long simulation time
- Tedious procedures

Physics-informed Neural Networks (PINN)

- Mesh-free
- Physics-constraint + data-assisted
- Diminutive model size
- Forward and inverse capability

Vanilla PINN for Fluid Simulation

Modified and reproduced based on Cai et al. (2021)

Physics Loss Formulation

$$\begin{aligned} \mathcal{L}_{PINN} &= \omega_1 \mathcal{L}_{PDE} + \omega_2 \mathcal{L}_{data} \\ &+ \omega_3 \mathcal{L}_{ic} + \omega_4 \mathcal{L}_{bc} \end{aligned}$$

The N-S momentum eqns are raised from F = ma

$$\underbrace{\rho\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right)}_{m \ \mathbf{a}} = \underbrace{-\nabla p + \mu \nabla^2 \mathbf{u} + \rho \mathbf{f}}_{\mathbf{F}}$$

Hence, $F = ma \Rightarrow ma - F = 0$ (for satisfying the conservation)

$$\rho\left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u}\right) + \nabla p - \mu \nabla^2 \mathbf{u} - \rho \mathbf{f} = 0$$

If $ma - F \neq 0$, the loss raises (formulated in the 2-norm fashion)

$$\mathscr{L}_{NS} = \left\| \rho \left(\frac{\partial \hat{\mathbf{u}}}{\partial t} + (\hat{\mathbf{u}} \cdot \nabla) \hat{\mathbf{u}} \right) + \nabla p - \mu \nabla^2 \hat{\mathbf{u}} - \rho \mathbf{f} \right\|_2$$

û : trained (imperfect) result from the network

Overall objective

- Develop a physics-informed <u>surrogate</u> model to approximate the fluid dynamics within parameterized vascular geometries;
- Exploit the opportunity of predicting <u>unseen</u> fluid dynamics with a pre-trained model.

Benchmark I: Framework Realisation and Optimisation

Evaluate the feasibility of using <u>performance-enhancing</u> techniques: adaptive learning rate (ADR), hard boundary (HB), increase order (IO)

Benchmark II: Multi-Case Training and Prediction

Implement the case hyper-network to <u>simultaneously</u> train <u>multiple</u> parametrised cases, and <u>predict</u> the unseen cases with the model

Problem Setup and Network Architecture

Fluid Mechanics & Geometry Transformation

[©] Imperial College London

1- Adaptive Leaning Rate (ALR)

- X The step-decay schedule cannot ensure the thorough the current convergence is;
- ALR continuously tracks the speed of convergence, decaying the LR when oscillations detected.

1- Adaptive Leaning Rate (ALR)

- X The step-decay schedule cannot ensure the thorough the current convergence is;
- ALR continuously tracks the speed of convergence, decaying the LR when oscillations detected.

1- Adaptive Leaning Rate (ALR)

- X The step-decay schedule cannot ensure the thorough the current convergence is;
- ALR continuously tracks the speed of convergence, decaying the LR when oscillations detected.

2- Hard Boundary (HB) Correction

- X Constraining the boundary conditions in NN increases the DoF of NN;
- By using a hard boundary post layer, we can explicitly impose the desired boundary conditions to the domain.

Inside a Neuron

<u>Q</u>: can the tanh activate function model higher-order functions?

1- Adaptive Leaning Rate (ALR)

- X The step-decay schedule cannot ensure the thorough the current convergence is;
- ALR continuously tracks the speed of convergence, decaying the LR when oscillations detected.

2- Hard Boundary (HB) Correction

- X Constraining the boundary conditions in NN increases the DoF of NN;
- By using a hard boundary post layer, we can explicitly impose the desired boundary conditions to the domain.

3- Increase Order (IO)

- X tanh may not be able to model higher-order functions;
- Pre-compute the 2nd-order spatial coordinates may help NN better model the higher-order functions.

Results and Discussion

Framework Realisation and Optimisation

	$\varepsilon_{\mathrm{overall}}$ (%)	Avg. speed (iters/s)
Vanilla PINN	3.14	16.5
Modified PINN	0.48	3.75

Framework Realisation and Optimisation

	$\varepsilon_{\mathrm{overall}}$ (%)	Avg. speed (iters/s)
Vanilla PINN	3.14	16.5
Modified PINN	0.48	3.75

[©] Imperial College London

Stenosis & Aneurysm Cases

	Stenosis	Aneurysm
$\varepsilon_{\mathrm{overall}}$ (%)	2.90	4.77

Secondary Flow

Case Network

 12 cases were trained, 96 unseen cases were predicted with feature parameters chosen between the training range.

$arepsilon_{u,\max}~(\%)$	$arepsilon_{v,\mathrm{max}}$ (%)	$arepsilon_{p, ext{max}}$ (%)
3.39	8.35	7.25

• Generally, errors are low in the middle of the range, high around the range boundaries.

Summary

- Physics-informed neural networks are capable in accurately modelling the fluid dynamics for various geometries with the feasible performance-enhancing techniques.
- With a case hypernetwork, we unlocked the possibility of real-time prediction of the fluid dynamics without re-training the case.

Limitations

- 1. 2-D idealistic geometries with heavy assumptions
- 2. lacks well-defined procedures to control the outcome (hyper-params)
- 3. Unsteady flow compatibility?
- **4.** "Curse of dimensionality" how can we mitigate it?

Binghuan Li binghuan.li19@imperial.ac.uk

- Wong HS, **Li B**, Chan WX, and Yap CH. *Pre-Training Varied Vascular Geometries with a Deep Learning Side Network in Physics-Informed Neural Network Simulations of Vascular Fluid Dynamics.* **ESBiomech23**

- Wong HS, Chan WX, **Li B**, and Yap CH. *Multicase Physics-Informed Neural Network for Biomedical Tube Flows.* In press